6,517 research outputs found

    MPPT Control for Solar Splash Photovoltaic Array

    Get PDF
    This thesis demonstrates the ability to model and simulate the operation of Maximum Power Point Tracking, MPPT. Moreover, the MPPT technology is contextualized within the confines of the Solar Splash competition to provide the foundation for future model development and simulation for optimal competition performance. MatLab Simulink was used to model the solar panel\u27s operation. A MPPT algorithm was written using the perturb and observe method and was implemented in the model using a buck DC to DC converter. The performance of the model with hardware in the loop using Typhoon and dSPACE, which demonstrated how the actual hardware would operate in real time. The results showed that in Simulink, an idealized environment, the MPPT operates as expected. However, hardware simulation revealed inaccuracies of MPPT at lower irradiance values. For all cases, the driving force for changes in power is the value of irradiance

    Efficiency of Photovoltaic Systems in Mountainous Areas

    Full text link
    Photovoltaic (PV) systems have received much attention in recent years due to their ability of efficiently converting solar power into electricity, which offers important benefits to the environment. PV systems in regions with high solar irradiation can produce a higher output but the temperature affects their performance. This paper presents a study on the effect of cold climate at high altitude on the PV system output. We report a comparative case study, which presents measurement results at two distinct sites, one at a height of 612 meters and another one at a mountain site at a height of 1764 meters. This case study applies the maximum power point tracking (MPPT) technique in order to determine maximum power from the PV panel at different azimuth and altitude angles. We used an Arduino system to measure and display the attributes of the PV system. The measurement results indicate an increased efficiency of 42% for PV systems at higher altitude

    A novel mine blast optimization algorithm (MBOA) based MPPT controlling for grid-PV systems

    Get PDF
    One of the most important areas in today's world is meeting the energy needs of various resources provided by nature. The advantages of renewable energy sources for many application sectors have attracted a lot of attention. The majority of grid-based enterprises use solar photovoltaic (PV) systems to collect sunlight as a reliable energy source. Due to solar PV's simple accessibility and efficient panel design, it is widely used in a variety of application scenarios. By employing the Maximum Power Point Tracking (MPPT) technique, the PV modules can typically operate at their best rate and draw the most power possible from the solar system. Some hybrid control mechanisms are utilized in solar PV systems in traditional works, which has limitations on the problems of increased time consumption, decreased efficiency, and increased THD. Thus, a new Mine Blast Optimization Algorithm (MBOA) based MPPT controlling model is developed to maximize the electrical energy produced by the PV panels under a different climatic situations. Also, an interleaved Luo DC-DC converter is used to significantly improve the output voltage of a PV system with a lower switching frequency. A sophisticated converter and regulating models are being created to effectively meet the energy demand of grid systems. The voltage source inverter is used to lower the level of harmonics and ensure the grid systems' power quality. Various performance indicators are applied to assess the simulation and comparative results of the proposed MBOA-MPPT controlling technique integrated with an interleaved Luo converter

    Modeling a Grid-Connected PV/Battery Microgrid System with MPPT Controller

    Full text link
    This paper focuses on performance analyzing and dynamic modeling of the current grid-tied fixed array 6.84kW solar photovoltaic system located at Florida Atlantic University (FAU). A battery energy storage system is designed and applied to improve the systems stability and reliability. An overview of the entire system and its PV module are presented. In sequel, the corresponding I-V and P-V curves are obtained using MATLAB-Simulink package. Actual data was collected and utilized for the modeling and simulation of the system. In addition, a grid- connected PV/Battery system with Maximum Power Point Tracking (MPPT) controller is modeled to analyze the system performance that has been evaluated under two different test conditions: (1) PV power production is higher than the load demand (2) PV generated power is less than required load. A battery system has also been sized to provide smoothing services to this array. The simulation results show the effective of the proposed method. This system can be implemented in developing countries with similar weather conditions to Florida.Comment: 6 pages, 14 figures, PVSC 201

    "WindFi" - a renewable powered base station for rural broadband

    Get PDF
    The HopScotch rural wireless broadband access test bed uses a network of low power base stations, powered by renewable energy sources to provide a low-cost rural broadband solution. In this paper we discuss the low power design aspects of the HopScotch base station and the impact on the required generation potential of renewable sources, battery bank sizing and the use of tracking PV arrays

    Solar Photovoltaic and Thermal Energy Systems: Current Technology and Future Trends

    Get PDF
    Solar systems have become very competitive solutions for residential, commercial, and industrial applications for both standalone and grid connected operations. This paper presents an overview of the current status and future perspectives of solar energy (mainly photovoltaic) technology and the required conversion systems. The focus in the paper is put on the current technology, installations challenges, and future expectations. Various aspects related to the global solar market, the photovoltaic (PV) modules cost and technology, and the power electronics converter systems are addressed. Research trends and recommendations for each of the PV system sectors are also discussed.Junta de Andalucía P11-TIC-7070Ministerio de Ciencia e Innovación TEC2016-78430-

    Solar array fed synchronous reluctance motor driven water pump : an improved performance under partial shading conditions

    Get PDF
    An improved performance of a photovoltaic (PV) pumping system employing a synchronous reluctance motor (SynRM) under partial shading conditions is proposed. The system does not include the dc-dc converter that is predominantly being utilized for maximizing the output power of the PV array. In addition, storage batteries are also not contained. A conventional inverter connected directly to the PV array is used to drive the SynRM. Further, a control strategy is proposed to drive the inverter so that the maximum output power of the PV array is achieved while the SynRM is working at the maximum torque per Ampere condition. Consequently, this results in an improved system efficiency and cost. Moreover, two maximum power point tracking (MPPT) techniques are compared under uniform and partial shadow irradiation conditions. The first MPPT algorithm is based on the conventional perturbation and observation (P&O) method and the second one uses a differential evolution (DE) optimization technique. It is found that the DE optimization method leads to a higher PV output power than using the P&O method under the partial shadow condition. Hence, the pump flow rate is much higher. However, under a uniform irradiation level, the PV system provides the available maximum power using both MPPT techniques. The experimental measurements are obtained to validate the theoretical work
    corecore