51 research outputs found

    TrustDL: Use of trust-based dictionary learning to facilitate recommendation in social networks

    Get PDF
    peer reviewedCollaborative filtering (CF) is a widely applied method to perform recommendation tasks in a wide range of domains and applications. Dictionary learning (DL) models, which are highly important in CF-based recommender systems (RSs), are well represented by rating matrices. However, these methods alone do not resolve the cold start and data sparsity issues in RSs. We observed a significant improvement in rating results by adding trust information on the social network. For that purpose, we proposed a new dictionary learning technique based on trust information, called TrustDL, where the social network data were employed in the process of recommendation based on structural details on the trusted network. TrustDL sought to integrate the sources of information, including trust statements and ratings, into the recommendation model to mitigate both problems of cold start and data sparsity. It conducted dictionary learning and trust embedding simultaneously to predict unknown rating values. In this paper, the dictionary learning technique was integrated into rating learning, along with the trust consistency regularization term designed to offer a more accurate understanding of the feature representation. Moreover, partially identical trust embedding was developed, where users with similar rating sets could cluster together, and those with similar rating sets could be represented collaboratively. The proposed strategy appears significantly beneficial based on experiments conducted on four frequently used datasets: Epinions, Ciao, FilmTrust, and Flixster

    A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects

    Full text link
    Recommender systems have significantly developed in recent years in parallel with the witnessed advancements in both internet of things (IoT) and artificial intelligence (AI) technologies. Accordingly, as a consequence of IoT and AI, multiple forms of data are incorporated in these systems, e.g. social, implicit, local and personal information, which can help in improving recommender systems' performance and widen their applicability to traverse different disciplines. On the other side, energy efficiency in the building sector is becoming a hot research topic, in which recommender systems play a major role by promoting energy saving behavior and reducing carbon emissions. However, the deployment of the recommendation frameworks in buildings still needs more investigations to identify the current challenges and issues, where their solutions are the keys to enable the pervasiveness of research findings, and therefore, ensure a large-scale adoption of this technology. Accordingly, this paper presents, to the best of the authors' knowledge, the first timely and comprehensive reference for energy-efficiency recommendation systems through (i) surveying existing recommender systems for energy saving in buildings; (ii) discussing their evolution; (iii) providing an original taxonomy of these systems based on specified criteria, including the nature of the recommender engine, its objective, computing platforms, evaluation metrics and incentive measures; and (iv) conducting an in-depth, critical analysis to identify their limitations and unsolved issues. The derived challenges and areas of future implementation could effectively guide the energy research community to improve the energy-efficiency in buildings and reduce the cost of developed recommender systems-based solutions.Comment: 35 pages, 11 figures, 1 tabl

    Learning with Scalability and Compactness

    Get PDF
    Artificial Intelligence has been thriving for decades since its birth. Traditional AI features heuristic search and planning, providing good strategy for tasks that are inherently search-based problems, such as games and GPS searching. In the meantime, machine learning, arguably the hottest subfield of AI, embraces data-driven methodology with great success in a wide range of applications such as computer vision and speech recognition. As a new trend, the applications of both learning and search have shifted toward mobile and embedded devices which entails not only scalability but also compactness of the models. Under this general paradigm, we propose a series of work to address the issues of scalability and compactness within machine learning and its applications on heuristic search. We first focus on the scalability issue of memory-based heuristic search which is recently ameliorated by Maximum Variance Unfolding (MVU), a manifold learning algorithm capable of learning state embeddings as effective heuristics to speed up Aโˆ—A^* search. Though achieving unprecedented online search performance with constraints on memory footprint, MVU is notoriously slow on offline training. To address this problem, we introduce Maximum Variance Correction (MVC), which finds large-scale feasible solutions to MVU by post-processing embeddings from any manifold learning algorithm. It increases the scale of MVU embeddings by several orders of magnitude and is naturally parallel. We further propose Goal-oriented Euclidean Heuristic (GOEH), a variant to MVU embeddings, which preferably optimizes the heuristics associated with goals in the embedding while maintaining their admissibility. We demonstrate unmatched reductions in search time across several non-trivial Aโˆ—A^* benchmark search problems. Through these work, we bridge the gap between the manifold learning literature and heuristic search which have been regarded as fundamentally different, leading to cross-fertilization for both fields. Deep learning has made a big splash in the machine learning community with its superior accuracy performance. However, it comes at a price of huge model size that might involves billions of parameters, which poses great challenges for its use on mobile and embedded devices. To achieve the compactness, we propose HashedNets, a general approach to compressing neural network models leveraging feature hashing. At its core, HashedNets randomly group parameters using a low-cost hash function, and share parameter value within the group. According to our empirical results, a neural network could be 32x smaller with little drop in accuracy performance. We further introduce Frequency-Sensitive Hashed Nets (FreshNets) to extend this hashing technique to convolutional neural network by compressing parameters in the frequency domain. Compared with many AI applications, neural networks seem not graining as much popularity as it should be in traditional data mining tasks. For these tasks, categorical features need to be first converted to numerical representation in advance in order for neural networks to process them. We show that a na\ {i}ve use of the classic one-hot encoding may result in gigantic weight matrices and therefore lead to prohibitively expensive memory cost in neural networks. Inspired by word embedding, we advocate a compellingly simple, yet effective neural network architecture with category embedding. It is capable of directly handling both numerical and categorical features as well as providing visual insights on feature similarities. At the end, we conduct comprehensive empirical evaluation which showcases the efficacy and practicality of our approach, and provides surprisingly good visualization and clustering for categorical features

    Simple and effective neural-free soft-cluster embeddings for item cold-start recommendations

    Get PDF
    Recommender systems are widely used in online platforms for easy exploration of personalized content. The best available recommendation algorithms are based on using the observed preference information among collaborating entities. A significant challenge in recommender system continues to be item cold-start recommendation: how to effectively recommend items with no observed or past preference information. Here we propose a two-stage algorithm based on soft clustering to provide an efficient solution to this problem. The crux of our approach lies in representing the items as soft-cluster embeddings in the space spanned by the side-information associated with the items. Though many item embedding approaches have been proposed for item cold-start recommendations in the pastโ€”and simple as they might appearโ€”to the best of our knowledge, the approach based on soft-cluster embeddings has not been proposed in the research literature. Our experimental results on four benchmark datasets conclusively demonstrate that the proposed algorithm makes accurate recommendations in item cold-start settings compared to the state-of-the-art algorithms according to commonly used ranking metrics like Normalized Discounted Cumulative Gain (NDCG) and Mean Average Precision (MAP). The performance of our proposed algorithm on the MovieLens 20M dataset clearly demonstrates the scalability aspect of our algorithm compared to other popular algorithms. We also propose the metric Cold Items Precision (CIP) to quantify the ability of a system to recommend cold-start items. CIP can be used in conjunction with relevance ranking metrics like NDCG and MAP to measure the effectiveness of the cold-start recommendation algorithm

    Receptive fields optimization in deep learning for enhanced interpretability, diversity, and resource efficiency.

    Get PDF
    In both supervised and unsupervised learning settings, deep neural networks (DNNs) are known to perform hierarchical and discriminative representation of data. They are capable of automatically extracting excellent hierarchy of features from raw data without the need for manual feature engineering. Over the past few years, the general trend has been that DNNs have grown deeper and larger, amounting to huge number of final parameters and highly nonlinear cascade of features, thus improving the flexibility and accuracy of resulting models. In order to account for the scale, diversity and the difficulty of data DNNs learn from, the architectural complexity and the excessive number of weights are often deliberately built in into their design. This flexibility and performance usually come with high computational and memory demands both during training and inference. In addition, insight into the mappings DNN models perform and human ability to understand them still remain very limited. This dissertation addresses some of these limitations by balancing three conflicting objectives: computational/ memory demands, interpretability, and accuracy. This dissertation first introduces some unsupervised feature learning methods in a broader context of dictionary learning. It also sets the tone for deep autoencoder learning and constraints for data representations in light of removing some of the aforementioned bottlenecks such as the feature interpretability of deep learning models with nonnegativity constraints on receptive fields. In addition, the two main classes of solution to the drawbacks associated with overparameterization/ over-complete representation in deep learning models are also presented. Subsequently, two novel methods, one for each solution class, are presented to address the problems resulting from over-complete representation exhibited by most deep learning models. The first method is developed to achieve inference-cost-efficient models via elimination of redundant features with negligible deterioration of prediction accuracy. This is important especially for deploying deep learning models into resource-limited portable devices. The second method aims at diversifying the features of DNNs in the learning phase to improve their performance without undermining their size and capacity. Lastly, feature diversification is considered to stabilize adversarial learning and extensive experimental outcomes show that these methods have the potential of advancing the current state-of-the-art on different learning tasks and benchmark datasets

    ๋ณ‘๋ ฌํ™” ์šฉ์ดํ•œ ํ†ต๊ณ„๊ณ„์‚ฐ ๋ฐฉ๋ฒ•๋ก ๊ณผ ํ˜„๋Œ€ ๊ณ ์„ฑ๋Šฅ ์ปดํ“จํŒ… ํ™˜๊ฒฝ์—์˜ ์ ์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ†ต๊ณ„ํ•™๊ณผ, 2020. 8. ์›์ค‘ํ˜ธ.Technological advances in the past decade, hardware and software alike, have made access to high-performance computing (HPC) easier than ever. In this dissertation, easily-parallelizable, inversion-free, and variable-separated algorithms and their implementation in statistical computing are discussed. The first part considers statistical estimation problems under structured sparsity posed as minimization of a sum of two or three convex functions, one of which is a composition of non-smooth and linear functions. Examples include graph-guided sparse fused lasso and overlapping group lasso. Two classes of inversion-free primal-dual algorithms are considered and unified from a perspective of monotone operator theory. From this unification, a continuum of preconditioned forward-backward operator splitting algorithms amenable to parallel and distributed computing is proposed. The unification is further exploited to introduce a continuum of accelerated algorithms on which the theoretically optimal asymptotic rate of convergence is obtained. For the second part, easy-to-use distributed matrix data structures in PyTorch and Julia are presented. They enable users to write code once and run it anywhere from a laptop to a workstation with multiple graphics processing units (GPUs) or a supercomputer in a cloud. With these data structures, various parallelizable statistical applications, including nonnegative matrix factorization, positron emission tomography, multidimensional scaling, and โ„“1-regularized Cox regression, are demonstrated. The examples scale up to an 8-GPU workstation and a 720-CPU-core cluster in a cloud. As a case in point, the onset of type-2 diabetes from the UK Biobank with 400,000 subjects and about 500,000 single nucleotide polymorphisms is analyzed using the HPC โ„“1-regularized Cox regression. Fitting a half-million variate model took about 50 minutes, reconfirming known associations. To my knowledge, the feasibility of a joint genome-wide association analysis of survival outcomes at this scale is first demonstrated.์ง€๋‚œ 10๋…„๊ฐ„์˜ ํ•˜๋“œ์›จ์–ด์™€ ์†Œํ”„ํŠธ์›จ์–ด์˜ ๊ธฐ์ˆ ์ ์ธ ๋ฐœ์ „์€ ๊ณ ์„ฑ๋Šฅ ์ปดํ“จํŒ…์˜ ์ ‘๊ทผ์žฅ๋ฒฝ์„ ๊ทธ ์–ด๋Š ๋•Œ๋ณด๋‹ค ๋‚ฎ์ถ”์—ˆ๋‹ค. ์ด ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋ณ‘๋ ฌํ™” ์šฉ์ดํ•˜๊ณ  ์—ญํ–‰๋ ฌ ์—ฐ์‚ฐ์ด ์—†๋Š” ๋ณ€์ˆ˜ ๋ถ„๋ฆฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๊ทธ ํ†ต๊ณ„๊ณ„์‚ฐ์—์„œ์˜ ๊ตฌํ˜„์„ ๋…ผ์˜ํ•œ๋‹ค. ์ฒซ ๋ถ€๋ถ„์€ ๋ณผ๋ก ํ•จ์ˆ˜ ๋‘ ๊ฐœ ๋˜๋Š” ์„ธ ๊ฐœ์˜ ํ•ฉ์œผ๋กœ ๋‚˜ํƒ€๋‚˜๋Š” ๊ตฌ์กฐํ™”๋œ ํฌ์†Œ ํ†ต๊ณ„ ์ถ”์ • ๋ฌธ์ œ์— ๋Œ€ํ•ด ๋‹ค๋ฃฌ๋‹ค. ์ด ๋•Œ ํ•จ์ˆ˜๋“ค ์ค‘ ํ•˜๋‚˜๋Š” ๋น„ํ‰ํ™œ ํ•จ์ˆ˜์™€ ์„ ํ˜• ํ•จ์ˆ˜์˜ ํ•ฉ์„ฑ์œผ๋กœ ๋‚˜ํƒ€๋‚œ๋‹ค. ๊ทธ ์˜ˆ์‹œ๋กœ๋Š” ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด ์œ ๋„๋˜๋Š” ํฌ์†Œ ์œตํ•ฉ Lasso ๋ฌธ์ œ์™€ ํ•œ ๋ณ€์ˆ˜๊ฐ€ ์—ฌ๋Ÿฌ ๊ทธ๋ฃน์— ์†ํ•  ์ˆ˜ ์žˆ๋Š” ๊ทธ๋ฃน Lasso ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ์ด๋ฅผ ํ’€๊ธฐ ์œ„ํ•ด ์—ญํ–‰๋ ฌ ์—ฐ์‚ฐ์ด ์—†๋Š” ๋‘ ์ข…๋ฅ˜์˜ ์›์‹œ-์Œ๋Œ€ (primal-dual) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋‹จ์กฐ ์—ฐ์‚ฐ์ž ์ด๋ก  ๊ด€์ ์—์„œ ํ†ตํ•ฉํ•˜๋ฉฐ ์ด๋ฅผ ํ†ตํ•ด ๋ณ‘๋ ฌํ™” ์šฉ์ดํ•œ precondition๋œ ์ „๋ฐฉ-ํ›„๋ฐฉ ์—ฐ์‚ฐ์ž ๋ถ„ํ•  ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ง‘ํ•ฉ์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ํ†ตํ•ฉ์€ ์ ๊ทผ์ ์œผ๋กœ ์ตœ์  ์ˆ˜๋ ด๋ฅ ์„ ๊ฐ–๋Š” ๊ฐ€์† ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ง‘ํ•ฉ์„ ๊ตฌ์„ฑํ•˜๋Š” ๋ฐ ํ™œ์šฉ๋œ๋‹ค. ๋‘ ๋ฒˆ์งธ ๋ถ€๋ถ„์—์„œ๋Š” PyTorch์™€ Julia๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉํ•˜๊ธฐ ์‰ฌ์šด ๋ถ„์‚ฐ ํ–‰๋ ฌ ์ž๋ฃŒ ๊ตฌ์กฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ด ๊ตฌ์กฐ๋Š” ์‚ฌ์šฉ์ž๋“ค์ด ์ฝ”๋“œ๋ฅผ ํ•œ ๋ฒˆ ์ž‘์„ฑํ•˜๋ฉด ์ด๊ฒƒ์„ ๋…ธํŠธ๋ถ ํ•œ ๋Œ€์—์„œ๋ถ€ํ„ฐ ์—ฌ๋Ÿฌ ๋Œ€์˜ ๊ทธ๋ž˜ํ”ฝ ์ฒ˜๋ฆฌ ์žฅ์น˜ (GPU)๋ฅผ ๊ฐ€์ง„ ์›Œํฌ์Šคํ…Œ์ด์…˜, ๋˜๋Š” ํด๋ผ์šฐ๋“œ ์ƒ์— ์žˆ๋Š” ์Šˆํผ์ปดํ“จํ„ฐ๊นŒ์ง€ ๋‹ค์–‘ํ•œ ์Šค์ผ€์ผ์—์„œ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ด ์ค€๋‹ค. ์•„์šธ๋Ÿฌ, ์ด ์ž๋ฃŒ ๊ตฌ์กฐ๋ฅผ ๋น„์Œ ํ–‰๋ ฌ ๋ถ„ํ•ด, ์–‘์ „์ž ๋‹จ์ธต ์ดฌ์˜, ๋‹ค์ฐจ์› ์ฒ™ ๋„๋ฒ•, โ„“1-๋ฒŒ์ ํ™” Cox ํšŒ๊ท€ ๋ถ„์„ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ณ‘๋ ฌํ™” ๊ฐ€๋Šฅํ•œ ํ†ต๊ณ„์  ๋ฌธ์ œ์— ์ ์šฉํ•œ๋‹ค. ์ด ์˜ˆ์‹œ๋“ค์€ 8๋Œ€์˜ GPU๊ฐ€ ์žˆ๋Š” ์›Œํฌ์Šคํ…Œ์ด์…˜๊ณผ 720๊ฐœ์˜ ์ฝ”์–ด๊ฐ€ ์žˆ๋Š” ํด๋ผ์šฐ๋“œ ์ƒ์˜ ๊ฐ€์ƒ ํด๋Ÿฌ์Šคํ„ฐ์—์„œ ํ™•์žฅ ๊ฐ€๋Šฅํ–ˆ๋‹ค. ํ•œ ์‚ฌ๋ก€๋กœ 400,000๋ช…์˜ ๋Œ€์ƒ๊ณผ 500,000๊ฐœ์˜ ๋‹จ์ผ ์—ผ๊ธฐ ๋‹คํ˜•์„ฑ ์ •๋ณด๊ฐ€ ์žˆ๋Š” UK Biobank ์ž๋ฃŒ์—์„œ์˜ ์ œ2ํ˜• ๋‹น๋‡จ๋ณ‘ (T2D) ๋ฐœ๋ณ‘ ๋‚˜์ด๋ฅผ โ„“1-๋ฒŒ์ ํ™” Cox ํšŒ๊ท€ ๋ชจํ˜•์„ ํ†ตํ•ด ๋ถ„์„ํ–ˆ๋‹ค. 500,000๊ฐœ์˜ ๋ณ€์ˆ˜๊ฐ€ ์žˆ๋Š” ๋ชจํ˜•์„ ์ ํ•ฉ์‹œํ‚ค๋Š” ๋ฐ 50๋ถ„ ๊ฐ€๋Ÿ‰์˜ ์‹œ๊ฐ„์ด ๊ฑธ๋ ธ์œผ๋ฉฐ ์•Œ๋ ค์ง„ T2D ๊ด€๋ จ ๋‹คํ˜•์„ฑ๋“ค์„ ์žฌํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ทœ๋ชจ์˜ ์ „์œ ์ „์ฒด ๊ฒฐํ•ฉ ์ƒ์กด ๋ถ„์„์€ ์ตœ์ดˆ๋กœ ์‹œ๋„๋œ ๊ฒƒ์ด๋‹ค.Chapter1Prologue 1 1.1 Introduction 1 1.2 Accessible High-Performance Computing Systems 4 1.2.1 Preliminaries 4 1.2.2 Multiple CPU nodes: clusters, supercomputers, and clouds 7 1.2.3 Multi-GPU node 9 1.3 Highly Parallelizable Algorithms 12 1.3.1 MM algorithms 12 1.3.2 Proximal gradient descent 14 1.3.3 Proximal distance algorithm 16 1.3.4 Primal-dual methods 17 Chapter 2 Easily Parallelizable and Distributable Class of Algorithms for Structured Sparsity, with Optimal Acceleration 20 2.1 Introduction 20 2.2 Unification of Algorithms LV and CV (g โ‰ก 0) 30 2.2.1 Relation between Algorithms LV and CV 30 2.2.2 Unified algorithm class 34 2.2.3 Convergence analysis 35 2.3 Optimal acceleration 39 2.3.1 Algorithms 40 2.3.2 Convergence analysis 41 2.4 Stochastic optimal acceleration 45 2.4.1 Algorithm 45 2.4.2 Convergence analysis 47 2.5 Numerical experiments 50 2.5.1 Model problems 50 2.5.2 Convergence behavior 52 2.5.3 Scalability 62 2.6 Discussion 63 Chapter 3 Towards Unified Programming for High-Performance Statistical Computing Environments 66 3.1 Introduction 66 3.2 Related Software 69 3.2.1 Message-passing interface and distributed array interfaces 69 3.2.2 Unified array interfaces for CPU and GPU 69 3.3 Easy-to-use Software Libraries for HPC 70 3.3.1 Deep learning libraries and HPC 70 3.3.2 Case study: PyTorch versus TensorFlow 73 3.3.3 A brief introduction to PyTorch 76 3.3.4 A brief introduction to Julia 80 3.3.5 Methods and multiple dispatch 80 3.3.6 Multidimensional arrays 82 3.3.7 Matrix multiplication 83 3.3.8 Dot syntax for vectorization 86 3.4 Distributed matrix data structure 87 3.4.1 Distributed matrices in PyTorch: distmat 87 3.4.2 Distributed arrays in Julia: MPIArray 90 3.5 Examples 98 3.5.1 Nonnegative matrix factorization 100 3.5.2 Positron emission tomography 109 3.5.3 Multidimensional scaling 113 3.5.4 L1-regularized Cox regression 117 3.5.5 Genome-wide survival analysis of the UK Biobank dataset 121 3.6 Discussion 126 Chapter 4 Conclusion 131 Appendix A Monotone Operator Theory 134 Appendix B Proofs for Chapter II 139 B.1 Preconditioned forward-backward splitting 139 B.2 Optimal acceleration 147 B.3 Optimal stochastic acceleration 158 Appendix C AWS EC2 and ParallelCluster 168 C.1 Overview 168 C.2 Glossary 169 C.3 Prerequisites 172 C.4 Installation 173 C.5 Configuration 173 C.6 Creating, accessing, and destroying the cluster 178 C.7 Installation of libraries 178 C.8 Running a job 179 C.9 Miscellaneous 180 Appendix D Code for memory-efficient L1-regularized Cox proportional hazards model 182 Appendix E Details of SNPs selected in L1-regularized Cox regression 184 Bibliography 188 ๊ตญ๋ฌธ์ดˆ๋ก 212Docto

    Large-scale Machine Learning in High-dimensional Datasets

    Get PDF
    • โ€ฆ
    corecore