3,084 research outputs found

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Big Data Computing for Geospatial Applications

    Get PDF
    The convergence of big data and geospatial computing has brought forth challenges and opportunities to Geographic Information Science with regard to geospatial data management, processing, analysis, modeling, and visualization. This book highlights recent advancements in integrating new computing approaches, spatial methods, and data management strategies to tackle geospatial big data challenges and meanwhile demonstrates opportunities for using big data for geospatial applications. Crucial to the advancements highlighted in this book is the integration of computational thinking and spatial thinking and the transformation of abstract ideas and models to concrete data structures and algorithms

    Scale aware modeling and monitoring of the urban energy chain

    Get PDF
    With energy modeling at different complexity levels for smart cities and the concurrent data availability revolution from connected devices, a steady surge in demand for spatial knowledge has been observed in the energy sector. This transformation occurs in population centers focused on efficient energy use and quality of life. Energy-related services play an essential role in this mix, as they facilitate or interact with all other city services. This trend is primarily driven by the current age of the Ger.: Energiewende or energy transition, a worldwide push towards renewable energy sources, increased energy use efficiency, and local energy production that requires precise estimates of local energy demand and production. This shift in the energy market occurs as the world becomes aware of human-induced climate change, to which the building stock has a significant contribution (40% in the European Union). At the current rate of refurbishment and building replacement, of the buildings existing in 2050 in the European Union, 75% would not be classified as energy-efficient. That means that substantial structural change in the built environment and the energy chain is required to achieve EU-wide goals concerning environmental and energy policy. These objectives provide strong motivation for this thesis work and are generally made possible by energy monitoring and modeling activities that estimate the urban energy needs and quantify the impact of refurbishment measures. To this end, a modeling library called aEneAs was developed in the scope of this thesis that can perform city-wide building energy modeling. The library performs its tasks at the level of a single building and was a first in its field, using standardized spatial energy data structures that allow for portability from one city to another. For data input, extensive use was made of digital twins provided from CAD, BIM, GIS, architectural models, and a plethora of energy data sources. The library first quantifies primary thermal energy demand and then the impact of refurbishment measures. Lastly, it estimates the potential of renewable energy production from solar radiation. aEneAs also includes network modeling components that consider energy distribution in the given context, showing a path toward data modeling and simulation required for distributed energy production at the neighborhood and district level. In order to validate modeling activities in solar radiation and green façade and roof installations, six spatial models were coupled with sensor installations. These digital twins are included in three experiments that highlight this monitoring side of the energy chain and portray energy-related use cases that utilize the spatially enabled web services SOS-SES-WNS, SensorThingsAPI, and FIWARE. To this author\u27s knowledge, this is the first work that surveys the capabilities of these three solutions in a unifying context, each having its specific design mindset. The modeling and monitoring activity and their corresponding literature review indicated gaps in scientific knowledge concerning data science in urban energy modeling. First, a lack of standardization regarding the spatial scales at which data is stored and used in urban energy modeling was observed. In order to identify the appropriate spatial levels for modeling and data aggregation, scale is explored in-depth in the given context and defined as a byproduct of resolution and extent, with ranges provided for both parameters. To that end, a survey of the encountered spatial scales and actors in six different geographical and cultural settings was performed. The information from this survey was used to put forth a standardized spatial scales definition and create a scale-dependent ontology for use in urban energy modeling. The ontology also provides spatially enabled persistent identifiers that resolve issues encountered with object relationships in modeling for inheritance, dependency, and association. The same survey also reveals two significant issues with data in urban energy modeling. These are data consistency across spatial scales and urban fabric contiguity. The impact of these issues and different solutions such as data generalization are explored in the thesis. Further advancement of scientific knowledge is provided specifically with spatial standards and spatial data infrastructure in urban energy modeling. A review of use cases in the urban energy chain and a taxonomy of the standards were carried out. These provide fundamental input for another piece of this thesis: inclusive software architecture methods that promote data integration and allow for external connectivity to modern and legacy systems. In order to reduce time-costly extraction, transformation, and load processes, databases and web services to ferry data to and from separate data sources were used. As a result, the spatial models become central linking elements of the different types of energy-related data in a novel perspective that differs from the traditional one, where spatial data tends to be non-interoperable / not linked with other data types. These distinct data fusion approaches provide flexibility in an energy chain environment with inconsistent data structures and software. Furthermore, the knowledge gathered from the experiments presented in this thesis is provided as a synopsis of good practices

    Proceedings of the GIS Research UK 18th Annual Conference GISRUK 2010

    Get PDF
    This volume holds the papers from the 18th annual GIS Research UK (GISRUK). This year the conference, hosted at University College London (UCL), from Wednesday 14 to Friday 16 April 2010. The conference covered the areas of core geographic information science research as well as applications domains such as crime and health and technological developments in LBS and the geoweb. UCL’s research mission as a global university is based around a series of Grand Challenges that affect us all, and these were accommodated in GISRUK 2010. The overarching theme this year was “Global Challenges”, with specific focus on the following themes: * Crime and Place * Environmental Change * Intelligent Transport * Public Health and Epidemiology * Simulation and Modelling * London as a global city * The geoweb and neo-geography * Open GIS and Volunteered Geographic Information * Human-Computer Interaction and GIS Traditionally, GISRUK has provided a platform for early career researchers as well as those with a significant track record of achievement in the area. As such, the conference provides a welcome blend of innovative thinking and mature reflection. GISRUK is the premier academic GIS conference in the UK and we are keen to maintain its outstanding record of achievement in developing GIS in the UK and beyond

    Proceedings of the meeting on: Research based on Ordnance Survey small-scales digital data

    Get PDF
    Special issue (CISRG - Cartographic Information Systems Research Group) ;

    LIPIcs, Volume 277, GIScience 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 277, GIScience 2023, Complete Volum

    Data integration for urban transport planning

    Get PDF
    Urban transport planning aims at balancing conflicting challenges by promoting more efficient transport systems while reducing negative impacts. The availability of better and more reliable data has not only stimulated new planning methodologies, but also created challenges for efficient data management and data integration. The major focus of this study is to improve methodologies for representing and integrating multi-source and multi-format urban transport data. This research approaches the issue of data integration based on the classification of urban transport data both from a functional and a representational perspective. The functional perspective considers characteristics of the urban transport system and planning requirements, and categorises data into supply, demand, performance and impact. The representational perspective considers transport data in terms of their spatial and non-spatial characteristics that are important for data representation. These two perspectives correspond to institutional and methodological data integration respectively, and are the foundation of transport data integration. This research is based on the city of Wuhan in China. The methodological issues of transport data integration are based on the representational perspective. A framework for data integration has been put forward, in which spatial data are classified as point, linear and areal types, and the non-spatial data are sorted out as values and temporal attributes. This research has respectively probed the integration of point, linear and areal transport data within a GIS environment. The locations of socio-economic activities are point-type data that need to be spatially referenced. A location referencing process requires a referencing base, source address units and referencing methods. The referencing base consists of such spatial features as streets, street addresses, points of interest and publicly known zones. These referencing bases have different levels of spatial preciseness and have to be kept in a hierarchy. Source addresses in Chinese cities are usually written as one sentence, which has to be divided into address units for automatic geo-coding. As it is difficult to separate from the sentences, the address units have to be clearly identified in survey forms. Depending on the types of address units, the referencing process makes use of either semantic name matching or address matching to link source addresses to features in the referencing base. The name-based and road-based referencing schemes constitute a comprehensive location referencing framework that is applicable to Chinese cities. The relationship between two sets of linear features can be identified with spatial overlay in the case of independent representation, or with internal linkage in a dependent representation. The bus line is such a feature that runs on the street network and can be dependently referenced by streets. In the heavily bus-oriented city of Wuhan, bus lines constitute a large public transit network that is important to transport planning and management. This research has extended conventional bus line representation to a more detailed level. Each bus line has been differentiated as two directional routes that are defined separately with reference to the street network. Accordingly, individual route stops are also represented in the database. These stop sites are spatial features with geometry that are linked to street segments and bus routes by linear location referencing methods. A data model linking base street network, bus lines and routes, line and route stops, and other bus operations data has been constructed. The benefits of the detailed model have been demonstrated in several transport applications. Zonal data transitions include three types of operations, i.e. aggregation, areal interpolation and disaggregation. This study focuses on disaggregating data from larger zones to smaller zones. In the context of Wuhan, zonal data disaggregation involves the allocation of statistical data from statistical units to smaller parcels. Given the availability of land use data, a weighted approach reflecting spatial variations has been applied in the disaggregation process. Two technical processes for disaggregation have been examined. Weighted area-weighting (WAW) is an adaptation of the classic area-weighting method, and Monte Carlo simulation (MC) is a stochastic process based on a raster data model. The MC outcome is more convenient for subsequent re-aggregation, and is also directly available for micro-simulation. An important contribution arising from this zonal integration study is that two standardised disaggregation tools have been developed within a GIS environment. The research has also explored the institutional aspect of data integration. The findings of this study show that there is generally a good institutional transport structure in the city of Wuhan and that there is also a growing awareness of using information technology. Professional cooperation exists among transport organisations, but not yet at a level for data sharing. An integrated data support framework requires data sharing. In such a framework, it should be possible to know where to get data for specific transport studies, or which kind of research an institution supports

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community
    • 

    corecore