218 research outputs found

    A Scheme for Detecting the Sinkhole for Secured WSN

    Get PDF
    Because of the limited computation capability as well as transmissions being broadcasted in a wireless sensor network (WSN) they are supposed to be more susceptible for attacks related to the security. As present wireless sensor networks have low-power constraints as well as increased complexity, thus for nodes’ performance analysis related to the embedded software and network simulation efficient approaches are required. Additionally, as these networks are used to deal with the sensitive information and operated in the adverse unattended environments, thus, security feature must be added in most of these wireless sensor networks. In this paper a novel scheme for detecting various sinkhole nodes for wireless sensor network (WSN). The results of this proposed scheme show the 1.75% fake positive rate and 96% of detection rate. In comparison to the previous schemes, these aspects are considerably better. In addition to these aspects, our scheme also achieves the communication as well as computational efficiencies. As a result of which, this proposed scheme proved to have better results in many applications.

    Security in Wireless Sensor Networks Employing MACGSP6

    Get PDF
    Wireless Sensor Networks (WSNs) have unique characteristics which constrain them; including small energy stores, limited computation, and short range communication capability. Most traditional security algorithms use cryptographic primitives such as Public-key cryptography and are not optimized for energy usage. Employing these algorithms for the security of WSNs is often not practical. At the same time, the need for security in WSNs is unavoidable. Applications such as military, medical care, structural monitoring, and surveillance systems require information security in the network. As current security mechanisms for WSNs are not sufficient, development of new security schemes for WSNs is necessary. New security schemes may be able to take advantage of the unique properties of WSNs, such as the large numbers of nodes typical in these networks to mitigate the need for cryptographic algorithms and key distribution and management. However, taking advantage of these properties must be done in an energy efficient manner. The research examines how the redundancy in WSNs can provide some security elements. The research shows how multiple random delivery paths (MRDPs) can provide data integrity for WSNs. Second, the research employs multiple sinks to increase the total number of duplicate packets received by sinks, allowing sink voting to mitigate the packet discard rate issue of a WSN with a single sink. Third, the research examines the effectiveness of using multiple random paths in maintaining data confidentiality in WSNs. Last, the research examines the use of a rate limit to cope with packet flooding attacks in WSNs

    Cognitive Security Framework For Heterogeneous Sensor Network Using Swarm Intelligence

    Get PDF
    Rapid development of sensor technology has led to applications ranging from academic to military in a short time span. These tiny sensors are deployed in environments where security for data or hardware cannot be guaranteed. Due to resource constraints, traditional security schemes cannot be directly applied. Unfortunately, due to minimal or no communication security schemes, the data, link and the sensor node can be easily tampered by intruder attacks. This dissertation presents a security framework applied to a sensor network that can be managed by a cohesive sensor manager. A simple framework that can support security based on situation assessment is best suited for chaotic and harsh environments. The objective of this research is designing an evolutionary algorithm with controllable parameters to solve existing and new security threats in a heterogeneous communication network. An in-depth analysis of the different threats and the security measures applied considering the resource constrained network is explored. Any framework works best, if the correlated or orthogonal performance parameters are carefully considered based on system goals and functions. Hence, a trade-off between the different performance parameters based on weights from partially ordered sets is applied to satisfy application specific requirements and security measures. The proposed novel framework controls heterogeneous sensor network requirements,and balance the resources optimally and efficiently while communicating securely using a multi-objection function. In addition, the framework can measure the affect of single or combined denial of service attacks and also predict new attacks under both cooperative and non-cooperative sensor nodes. The cognitive intuition of the framework is evaluated under different simulated real time scenarios such as Health-care monitoring, Emergency Responder, VANET, Biometric security access system, and Battlefield monitoring. The proposed three-tiered Cognitive Security Framework is capable of performing situation assessment and performs the appropriate security measures to maintain reliability and security of the system. The first tier of the proposed framework, a crosslayer cognitive security protocol defends the communication link between nodes during denial-of-Service attacks by re-routing data through secure nodes. The cognitive nature of the protocol balances resources and security making optimal decisions to obtain reachable and reliable solutions. The versatility and robustness of the protocol is justified by the results obtained in simulating health-care and emergency responder applications under Sybil and Wormhole attacks. The protocol considers metrics from each layer of the network model to obtain an optimal and feasible resource efficient solution. In the second tier, the emergent behavior of the protocol is further extended to mine information from the nodes to defend the network against denial-of-service attack using Bayesian models. The jammer attack is considered the most vulnerable attack, and therefore simulated vehicular ad-hoc network is experimented with varied types of jammer. Classification of the jammer under various attack scenarios is formulated to predict the genuineness of the attacks on the sensor nodes using receiver operating characteristics. In addition to detecting the jammer attack, a simple technique of locating the jammer under cooperative nodes is implemented. This feature enables the network in isolating the jammer or the reputation of node is affected, thus removing the malicious node from participating in future routes. Finally, a intrusion detection system using `bait\u27 architecture is analyzed where resources is traded-off for the sake of security due to sensitivity of the application. The architecture strategically enables ant agents to detect and track the intruders threateningthe network. The proposed framework is evaluated based on accuracy and speed of intrusion detection before the network is compromised. This process of detecting the intrusion earlier helps learn future attacks, but also serves as a defense countermeasure. The simulated scenarios of this dissertation show that Cognitive Security Framework isbest suited for both homogeneous and heterogeneous sensor networks

    Hierarchical Design Based Intrusion Detection System For Wireless Ad hoc Network

    Full text link
    In recent years, wireless ad hoc sensor network becomes popular both in civil and military jobs. However, security is one of the significant challenges for sensor network because of their deployment in open and unprotected environment. As cryptographic mechanism is not enough to protect sensor network from external attacks, intrusion detection system needs to be introduced. Though intrusion prevention mechanism is one of the major and efficient methods against attacks, but there might be some attacks for which prevention method is not known. Besides preventing the system from some known attacks, intrusion detection system gather necessary information related to attack technique and help in the development of intrusion prevention system. In addition to reviewing the present attacks available in wireless sensor network this paper examines the current efforts to intrusion detection system against wireless sensor network. In this paper we propose a hierarchical architectural design based intrusion detection system that fits the current demands and restrictions of wireless ad hoc sensor network. In this proposed intrusion detection system architecture we followed clustering mechanism to build a four level hierarchical network which enhances network scalability to large geographical area and use both anomaly and misuse detection techniques for intrusion detection. We introduce policy based detection mechanism as well as intrusion response together with GSM cell concept for intrusion detection architecture.Comment: 16 pages, International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010. arXiv admin note: text overlap with arXiv:1111.1933 by other author

    Wireless sensor network performance analysis and effect of blackhole and sinkhole attacks

    Get PDF
    The widespread usage of Wireless sensor networks in various fields and application make it vulnerable to variety of security threats and attacks. These security attacks occur when an adversary compromised a sensor node by inject false measurements and divert real time network traffic. Sinkhole and Blackhole attacks are very common attacks in network, where an attacker advertises un-authorized routing update in network. To deal with these types of attacks, there is a need to tighten the network security and prevent from attackers. In this study, we discuss security threats and presents the effects of Black and Sink hole attacks. Further, the study presents related work and current issues in wireless sensor network. The simulation results illustrated that, how these attacks affect the network performance

    Survey on Mechanisms to detect and mitigate the impact of Sinkhole Attack in Wireless Sensor Networks

    Get PDF
    Abstract Sinkhole attack is an active attack, launched in a Wireles
    corecore