65,039 research outputs found

    AN FPGA IMPLEMENTATION OF MODIFIED DECISION BASED UNSYMMETRICAL TRIMMED MEDIAN FILTER FOR THE REMOVAL OF SALT AND PEPPER NOISE IN DIGITAL IMAGES

    Get PDF
    A modified decision based unsymmetrical trimmed median filter algorithm for the restoration of gray scale, and color images that are highly corrupted by salt and pepper noise is proposed in this paper. Images are often corrupted by impulse noise during acquisition and transmission; thus, an efficient noise suppression technique is required before subsequent image processing operations. Median filter (MF) is widely used in noise removal methods due to its denoising capability and computational efficiency. However, it is effective only for low noise densities. Extensive experimental results demonstrate that our method can obtain better performances in terms of both subjective and objective evaluations than denoising techniques. Especially, the proposed method can preserve edges very well while removing salt and pepper noise. Modified Decision Based Algorithm (MDBA), and Progressive Switched Median Filter (PSMF) shows better results at low and medium noise densities. At high noise densities, their performance is poor. A new algorithm to remove high-density salt and pepper noise using modified Decision Based Unsymmetric Trimmed Median Filter (DBUTMF) is proposed. The proposed algorithm replaces the noisy pixel by trimmed median. Since our algorithm is algorithmically simple, it is very suitable to be applied to many real-time applications and higher noise densities. When all the pixel values are 0’s and 255’s then the noise pixel is replaced by mean value of all the elements present in the selected window. The proposed algorithm is tested against different grayscale and color images and it gives better Peak Signal-to-Noise Ratio (PSNR) and Image Enhancement Factor (IEF)

    Improved Stroke Detection at Early Stages Using Haar Wavelets and Laplacian Pyramid

    Get PDF
    Stroke merupakan pembunuh nomor tiga di dunia, namun hanya sedikit metode tentang deteksi dini. Oleh karena itu dibutuhkan metode untuk mendeteksi hal tersebut. Penelitian ini mengusulkan sebuah metode gabungan untuk mendeteksi dua jenis stroke secara simultan. Haar wavelets untuk mendeteksi stroke hemoragik dan Laplacian pyramid untuk mendeteksi stroke iskemik. Tahapan dalam penelitian ini terdiri dari pra proses tahap 1 dan 2, Haar wavelets, Laplacian pyramid, dan perbaikan kualitas citra. Pra proses adalah menghilangkan bagian tulang tengkorak, reduksi derau, perbaikan kontras, dan menghilangkan bagian selain citra otak. Kemudian dilakukan perbaikan citra. Selanjutnya Haar wavelet digunakan untuk ekstraksi daerah hemoragik sedangkan Laplacian pyramid untuk ekstraksi daerah iskemik. Tahapan terakhir adalah menghitung fitur Grey Level Cooccurrence Matrix (GLCM) sebagai fitur untuk proses klasifikasi. Hasil visualisasi diproses lanjut untuk ekstrasi fitur menggunakan GLCM dengan 12 fitur dan kemudian GLCM dengan 4 fitur. Untuk proses klasifikasi digunakan SVM dan KNN, sedangkan pengukuran performa menggunakan akurasi. Jumlah data hemoragik dan iskemik adalah 45 citra yang dibagi menjadi 2 bagian, 28 citra untuk pengujian dan 17 citra untuk pelatihan. Hasil akhir menunjukkan akurasi tertinggi yang dicapai menggunakan SVM adalah 82% dan KNN adalah 88%

    Impulsive noise removal from color images with morphological filtering

    Full text link
    This paper deals with impulse noise removal from color images. The proposed noise removal algorithm employs a novel approach with morphological filtering for color image denoising; that is, detection of corrupted pixels and removal of the detected noise by means of morphological filtering. With the help of computer simulation we show that the proposed algorithm can effectively remove impulse noise. The performance of the proposed algorithm is compared in terms of image restoration metrics and processing speed with that of common successful algorithms.Comment: The 6th international conference on analysis of images, social networks, and texts (AIST 2017), 27-29 July, 2017, Moscow, Russi

    DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks

    Full text link
    Despite a rapid rise in the quality of built-in smartphone cameras, their physical limitations - small sensor size, compact lenses and the lack of specific hardware, - impede them to achieve the quality results of DSLR cameras. In this work we present an end-to-end deep learning approach that bridges this gap by translating ordinary photos into DSLR-quality images. We propose learning the translation function using a residual convolutional neural network that improves both color rendition and image sharpness. Since the standard mean squared loss is not well suited for measuring perceptual image quality, we introduce a composite perceptual error function that combines content, color and texture losses. The first two losses are defined analytically, while the texture loss is learned in an adversarial fashion. We also present DPED, a large-scale dataset that consists of real photos captured from three different phones and one high-end reflex camera. Our quantitative and qualitative assessments reveal that the enhanced image quality is comparable to that of DSLR-taken photos, while the methodology is generalized to any type of digital camera

    BLADE: Filter Learning for General Purpose Computational Photography

    Full text link
    The Rapid and Accurate Image Super Resolution (RAISR) method of Romano, Isidoro, and Milanfar is a computationally efficient image upscaling method using a trained set of filters. We describe a generalization of RAISR, which we name Best Linear Adaptive Enhancement (BLADE). This approach is a trainable edge-adaptive filtering framework that is general, simple, computationally efficient, and useful for a wide range of problems in computational photography. We show applications to operations which may appear in a camera pipeline including denoising, demosaicing, and stylization
    • …
    corecore