270 research outputs found

    Giving eyes to ICT!, or How does a computer recognize a cow?

    Get PDF
    Het door Schouten en andere onderzoekers op het CWI ontwikkelde systeem berust op het beschrijven van beelden met behulp van fractale meetkunde. De menselijke waarneming blijkt mede daardoor zo efficiënt omdat zij sterk werkt met gelijkenissen. Het ligt dus voor de hand het te zoeken in wiskundige methoden die dat ook doen. Schouten heeft daarom beeldcodering met behulp van 'fractals' onderzocht. Fractals zijn zelfgelijkende meetkundige figuren, opgebouwd door herhaalde transformatie (iteratie) van een eenvoudig basispatroon, dat zich daardoor op steeds kleinere schalen vertakt. Op elk niveau van detaillering lijkt een fractal op zichzelf (Droste-effect). Met fractals kan men vrij eenvoudig bedrieglijk echte natuurvoorstellingen maken. Fractale beeldcodering gaat ervan uit dat het omgekeerde ook geldt: een beeld effectief opslaan in de vorm van de basispatronen van een klein aantal fractals, samen met het voorschrift hoe het oorspronkelijke beeld daaruit te reconstrueren. Het op het CWI in samenwerking met onderzoekers uit Leuven ontwikkelde systeem is mede gebaseerd op deze methode. ISBN 906196502

    Toward Efficient and Robust Large-Scale Structure-from-Motion Systems

    Get PDF
    The ever-increasing number of images that are uploaded and shared on the Internet has recently been leveraged by computer vision researchers to extract 3D information about the content seen in these images. One key mechanism to extract this information is structure-from-motion, which is the process of recovering the 3D geometry (structure) of a scene via a set of images from different viewpoints (camera motion). However, when dealing with crowdsourced datasets comprised of tens or hundreds of millions of images, the magnitude and diversity of the imagery poses challenges such as robustness, scalability, completeness, and correctness for existing structure-from-motion systems. This dissertation focuses on these challenges and demonstrates practical methods to address the problems of data association and verification within structure-from-motion systems. Data association within structure-from-motion systems consists of the discovery of pairwise image overlap within the input dataset. In order to perform this discovery, previous systems assumed that information about every image in the input dataset could be stored in memory, which is prohibitive for large-scale photo collections. To address this issue, we propose a novel streaming-based framework for the discovery of related sets of images, and demonstrate our approach on a crowdsourced dataset containing 100 million images from all around the world. Results illustrate that our streaming-based approach does not compromise model completeness, but achieves unprecedented levels of efficiency and scalability. The verification of individual data associations is difficult to perform during the process of structure-from-motion, as standard methods have limited scope when determining image overlap. Therefore, it is possible for erroneous associations to form, especially when there are symmetric, repetitive, or duplicate structures which can be incorrectly associated with each other. The consequences of these errors are incorrectly placed cameras and scene geometry within the 3D reconstruction. We present two methods that can detect these local inconsistencies and successfully resolve them into a globally consistent 3D model. In our evaluation, we show that our techniques are efficient, are robust to a variety of scenes, and outperform existing approaches.Doctor of Philosoph

    Toward Large Scale Semantic Image Understanding and Retrieval

    Get PDF
    Semantic image retrieval is a multifaceted, highly complex problem. Not only does the solution to this problem require advanced image processing and computer vision techniques, but it also requires knowledge beyond what can be inferred from the image content alone. In contrast, traditional image retrieval systems are based upon keyword searches on filenames or metadata tags, e.g. Google image search, Flickr search, etc. These conventional systems do not analyze the image content and their keywords are not guaranteed to represent the image. Thus, there is significant need for a semantic image retrieval system that can analyze and retrieve images based upon the content and relationships that exist in the real world.In this thesis, I present a framework that moves towards advancing semantic image retrieval in large scale datasets. At a conceptual level, semantic image retrieval requires the following steps: viewing an image, understanding the content of the image, indexing the important aspects of the image, connecting the image concepts to the real world, and finally retrieving the images based upon the index concepts or related concepts. My proposed framework addresses each of these components in my ultimate goal of improving image retrieval. The first task is the essential task of understanding the content of an image. Unfortunately, typically the only data used by a computer algorithm when analyzing images is the low-level pixel data. But, to achieve human level comprehension, a machine must overcome the semantic gap, or disparity that exists between the image data and human understanding. This translation of the low-level information into a high-level representation is an extremely difficult problem that requires more than the image pixel information. I describe my solution to this problem through the use of an online knowledge acquisition and storage system. This system utilizes the extensible, visual, and interactable properties of Scalable Vector Graphics (SVG) combined with online crowd sourcing tools to collect high level knowledge about visual content.I further describe the utilization of knowledge and semantic data for image understanding. Specifically, I seek to incorporate knowledge in various algorithms that cannot be inferred from the image pixels alone. This information comes from related images or structured data (in the form of hierarchies and ontologies) to improve the performance of object detection and image segmentation tasks. These understanding tasks are crucial intermediate steps towards retrieval and semantic understanding. However, the typical object detection and segmentation tasks requires an abundance of training data for machine learning algorithms. The prior training information provides information on what patterns and visual features the algorithm should be looking for when processing an image. In contrast, my algorithm utilizes related semantic images to extract the visual properties of an object and also to decrease the search space of my detection algorithm. Furthermore, I demonstrate the use of related images in the image segmentation process. Again, without the use of prior training data, I present a method for foreground object segmentation by finding the shared area that exists in a set of images. I demonstrate the effectiveness of my method on structured image datasets that have defined relationships between classes i.e. parent-child, or sibling classes.Finally, I introduce my framework for semantic image retrieval. I enhance the proposed knowledge acquisition and image understanding techniques with semantic knowledge through linked data and web semantic languages. This is an essential step in semantic image retrieval. For example, a car class classified by an image processing algorithm not enhanced by external knowledge would have no idea that a car is a type of vehicle which would also be highly related to a truck and less related to other transportation methods like a train . However, a query for modes of human transportation should return all of the mentioned classes. Thus, I demonstrate how to integrate information from both image processing algorithms and semantic knowledge bases to perform interesting queries that would otherwise be impossible. The key component of this system is a novel property reasoner that is able to translate low level image features into semantically relevant object properties. I use a combination of XML based languages such as SVG, RDF, and OWL in order to link to existing ontologies available on the web. My experiments demonstrate an efficient data collection framework and novel utilization of semantic data for image analysis and retrieval on datasets of people and landmarks collected from sources such as IMDB and Flickr. Ultimately, my thesis presents improvements to the state of the art in visual knowledge representation/acquisition and computer vision algorithms such as detection and segmentation toward the goal of enhanced semantic image retrieval

    Seventh Biennial Report : June 2003 - March 2005

    No full text
    • …
    corecore