3,813 research outputs found

    Feature Study on a Programmable Network Traffic Classifier

    Get PDF

    High performance modified bit-vector based packet classification module on low-cost FPGA

    Get PDF
    The packet classification plays a significant role in many network systems, which requires the incoming packets to be categorized into different flows and must take specific actions as per functional and application requirements. The network system speed is continuously increasing, so the demand for the packet classifier also increased. Also, the packet classifier's complexity is increased further due to multiple fields should match against a large number of rules. In this manuscript, an efficient and high performance modified bitvector (MBV) based packet classification (PC) is designed and implemented on low-cost Artix-7 FPGA. The proposed MBV based PC employs pipelined architecture, which offers low latency and high throughput for PC. The MBV based PC utilizes <2% slices, operating at 493.102 MHz, and consumes 0.1 W total power on Artix-7 FPGA. The proposed PC considers only 4 clock cycles to classify the incoming packets and provides 74.95 Gbps throughput. The comparative results in terms of hardware utilization and performance efficiency of proposed work with existing similar PC approaches are analyzed with better constraints improvement

    Range-enhanced packet classification to improve computational performance on field programmable gate array

    Get PDF
    Multi-filed packet classification is a powerful classification engine that classifies input packets into different fields based on predefined rules. As the demand for the internet increases, efficient network routers can support many network features like quality of services (QoS), firewalls, security, multimedia communications, and virtual private networks. However, the traditional packet classification methods do not fulfill today’s network functionality and requirements efficiently. In this article, an efficient range enhanced packet classification (REPC) module is designed using a range bit-vector encoding method, which provides a unique design to store the precomputed values in memory. In addition, the REPC supports range to prefix features to match the packets to the corresponding header fields. The synthesis and implementation results of REPC are analyzed and tabulated in detail. The REPC module utilizes 3% slices on Artix-7 field programmable gate array (FPGA), works at 99.87 Gbps throughput with a latency of 3 clock cycles. The proposed REPC is compared with existing packet classification approaches with better hardware constraints improvements
    • …
    corecore