173 research outputs found

    Privacy protection for telecare medicine information systems using a chaotic map-based three-factor authenticated key agreement scheme

    Get PDF
    Telecare Medicine Information Systems (TMIS) provides flexible and convenient e-health care. However the medical records transmitted in TMIS are exposed to unsecured public networks, so TMIS are more vulnerable to various types of security threats and attacks. To provide privacy protection for TMIS, a secure and efficient authenticated key agreement scheme is urgently needed to protect the sensitive medical data. Recently, Mishra et al. proposed a biometrics-based authenticated key agreement scheme for TMIS by using hash function and nonce, they claimed that their scheme could eliminate the security weaknesses of Yan et al.’s scheme and provide dynamic identity protection and user anonymity. In this paper, however, we demonstrate that Mishra et al.’s scheme suffers from replay attacks, man-in-the-middle attacks and fails to provide perfect forward secrecy. To overcome the weaknesses of Mishra et al.’s scheme, we then propose a three-factor authenticated key agreement scheme to enable the patient enjoy the remote healthcare services via TMIS with privacy protection. The chaotic map-based cryptography is employed in the proposed scheme to achieve a delicate balance of security and performance. Security analysis demonstrates that the proposed scheme resists various attacks and provides several attractive security properties. Performance evaluation shows that the proposed scheme increases efficiency in comparison with other related schemes

    Privacy Protection for Telecare Medicine Information Systems Using a Chaotic Map-Based Three-Factor Authenticated Key Agreement Scheme

    Full text link

    Pseudonymization and its Application to Cloud-based eHealth Systems

    Get PDF
    Responding to the security and privacy issues of information systems, we propose a novel pseudonym solution. This pseudonym solution has provable security to protect the identities of users by employing user-generated pseudonyms. It also provides an encryption scheme to protect the security of the users’ data stored in the public network. Moreover, the pseudonym solution also provides the authentication of pseudonyms without disclosing the users’ identity information. Thus the dependences on powerful trusted third parties and on the trustworthiness of system administrators may be appreciably alleviated. Electronic healthcare systems (eHealth systems), as one kind of everyday information system, with the ability to store and share patients’ health data efficiently, have to manage in-formation of an extremely personal nature. As a consequence of known cases of abuse and attacks, the security of the health data and the privacy of patients are a great concern for many people and thus becoming obstacles to the acceptance and spread of eHealth systems. In this thesis, we survey current eHealth systems in both research and practice, analyzing potential threats to the security and privacy. Cloud-based eHealth systems, in particular, enable applications with many new features in data storing and sharing. We analyze the new issues on security and privacy when cloud technology is introduced into eHealth systems. We demonstrate that our proposed pseudonym solution can be successfully applied to cloud-based eHealth systems. Firstly, we utilize the pseudonym scheme and encryption scheme for storing and retrieving the electronic health records (EHR) in the cloud. The identities of patients and the confidentiality of EHR contents are provably guaranteed by advanced cryptographic algorithms. Secondly, we utilize the pseudonym solution to protect the privacy of patients from the health insurance companies. Only necessary information about patients is disclosed to the health insurance companies, without interrupting the cur-rent normal business processes of health insurance. At last, based on the pseudonym solution, we propose a new procedure for the secondary use of the health data. The new procedure protects the privacy of patients properly and enables patients’ full control and clear consent over their health data to be secondarily used. A prototypical application of a cloud-based eHealth system implementing our proposed solution is presented in order to exhibit the practicability of the solution and to provide intuitive experiences. Some performance estimations of the proposed solution based on the implementation are also provided.Um gewisse Sicherheits- und Datenschutzdefizite heutiger Informationssysteme zu beheben, stellen wir eine neuartige Pseudonymisierungslösung vor, die benutzergenerierte Pseudonyme verwendet und die Identitäten der Pseudonyminhaber nachweisbar wirksam schützt. Sie beinhaltet neben der Pseudonymisierung auch ein Verschlüsselungsverfahren für den Schutz der Vertraulichkeit der Benutzerdaten, wenn diese öffentlich gespeichert werden. Weiterhin bietet sie ein Verfahren zur Authentisierung von Pseudonymen, das ohne die Offenbarung von Benutzeridentitäten auskommt. Dadurch können Abhängigkeiten von vertrauenswürdigen dritten Stellen (trusted third parties) oder von vertrauenswürdigen Systemadministratoren deutlich verringert werden. Elektronische Gesundheitssysteme (eHealth-Systeme) sind darauf ausgelegt, Patientendaten effizient zu speichern und bereitzustellen. Solche Daten haben ein extrem hohes Schutzbedürfnis, und bekannte Fälle von Angriffen auf die Vertraulichkeit der Daten durch Privilegienmissbrauch und externe Attacken haben dazu geführt, dass die Sorge um den Schutz von Gesundheitsdaten und Patientenidentitäten zu einem großen Hindernis für die Verbreitung und Akzeptanz von eHealth-Systemen geworden ist. In dieser Dissertation betrachten wir gegenwärtige eHealth-Systeme in Forschung und Praxis hinsichtlich möglicher Bedrohungen für Sicherheit und Vertraulichkeit der gespeicherten Daten. Besondere Beachtung finden cloudbasierte eHealth-Systeme, die Anwendungen mit neuartigen Konzepten zur Datenspeicherung und -bereitstellung ermöglichen. Wir analysieren Sicherheits- und Vertraulichkeitsproblematiken, die sich beim Einsatz von Cloud-Technologie in eHealth-Systemen ergeben. Wir zeigen, dass unsere Pseudonymisierungslösung erfolgreich auf cloudbasierte eHealth-Systeme angewendet werden kann. Dabei werden zunächst das Pseudonymisierungs- und das Verschlüsselungsverfahren bei der Speicherung und beim Abruf von elektronischen Gesundheitsdatensätzen (electronic health records, EHR) in der Cloud eingesetzt. Die Vertraulichkeit von Patientenidentitäten und EHR-Inhalten werden dabei durch den Einsatz moderner kryptografischer Algorithmen nachweisbar garantiert. Weiterhin setzen wir die Pseudonymisierungslösung zum Schutz der Privatsphäre der Patienten gegenüber Krankenversicherungsunternehmen ein. Letzteren werden lediglich genau diejenigen Patienteninformationen offenbart, die für den störungsfreien Ablauf ihrer Geschäftsprozesse nötig sind. Schließen schlagen wir eine neuartige Vorgehensweise für die Zweitverwertung der im eHealth-System gespeicherten Daten vor, die die Pseudonymisierungslösung verwendet. Diese Vorgehensweise bietet den Patienten angemessenen Schutz für ihre Privatsphäre und volle Kontrolle darüber, welche Daten für eine Zweitverwertung (z.B. für Forschungszwecke) freigegeben werden. Es wird ein prototypisches, cloudbasiertes eHealth-System vorgestellt, das die Pseudonymisierungslösung implementiert, um deren Praktikabilität zu demonstrieren und intuitive Erfahrungen zu vermitteln. Weiterhin werden, basierend auf der Implementierung, einige Abschätzungen der Performanz der Pseudonymisierungslösung angegeben

    A patient agent controlled customized blockchain based framework for internet of things

    Get PDF
    Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patient’s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patients’ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchain’s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.Doctor of Philosoph

    Secure data communication over mobile devices in health networks.

    Get PDF
    The continuous developments in the field of mobile computing have made it possible to use mobile devices for healthcare applications. These devices can be used by healthcare providers to collect and share patients' medical data. However, with increasing adoption of mobile devices that carry confidential data, organizations need to secure the data from unauthorized users and mobile device theft. When unencrypted data is transmitted from one device to another it faces various security threats from malicious code, unsecure networks, unauthorized access, and data theft. The objective of this research is to develop a secure data sharing solution customized for healthcare environments, which would allow authorized users to securely access and share patients' data over mobile devices. We identify the vulnerable locations in mobile communication network that can possibly be exploited by unauthorized users or malicious code to access the confidential data, and develop an efficient security protocol that provides end to end data protection without compromising device's performance. To demonstrate the feasibility of our proposed data sharing architecture, a prototype customized for Point-of-Care-Testing (POCT) scenarios was built in collaboration with Northern Health, Prince George. Simulations were performed to analyze and validate our solution against the pre-defined requirement criteria. --P. ii.The original print copy of this thesis may be available here: http://wizard.unbc.ca/record=b178382

    Uma arquitectura segura e colaborativa para registos de saúde electrónicos com suporte a mobilidade

    Get PDF
    Doutoramento em InformáticaDurante as ultimas décadas, os registos de saúde eletrónicos (EHR) têm evoluído para se adaptar a novos requisitos. O cidadão tem-se envolvido cada vez mais na prestação dos cuidados médicos, sendo mais pró ativo e desejando potenciar a utilização do seu registo. A mobilidade do cidadão trouxe mais desafios, a existência de dados dispersos, heterogeneidade de sistemas e formatos e grande dificuldade de partilha e comunicação entre os prestadores de serviços. Para responder a estes requisitos, diversas soluções apareceram, maioritariamente baseadas em acordos entre instituições, regiões e países. Estas abordagens são usualmente assentes em cenários federativos muito complexos e fora do controlo do paciente. Abordagens mais recentes, como os registos pessoais de saúde (PHR), permitem o controlo do paciente, mas levantam duvidas da integridade clinica da informação aos profissionais clínicos. Neste cenário os dados saem de redes e sistemas controlados, aumentando o risco de segurança da informação. Assim sendo, são necessárias novas soluções que permitam uma colaboração confiável entre os diversos atores e sistemas. Esta tese apresenta uma solução que permite a colaboração aberta e segura entre todos os atores envolvidos nos cuidados de saúde. Baseia-se numa arquitetura orientada ao serviço, que lida com a informação clínica usando o conceito de envelope fechado. Foi modelada recorrendo aos princípios de funcionalidade e privilégios mínimos, com o propósito de fornecer proteção dos dados durante a transmissão, processamento e armazenamento. O controlo de acesso _e estabelecido por políticas definidas pelo paciente. Cartões de identificação eletrónicos, ou certificados similares são utilizados para a autenticação, permitindo uma inscrição automática. Todos os componentes requerem autenticação mútua e fazem uso de algoritmos de cifragem para garantir a privacidade dos dados. Apresenta-se também um modelo de ameaça para a arquitetura, por forma a analisar se as ameaças possíveis foram mitigadas ou se são necessários mais refinamentos. A solução proposta resolve o problema da mobilidade do paciente e a dispersão de dados, capacitando o cidadão a gerir e a colaborar na criação e manutenção da sua informação de saúde. A arquitetura permite uma colaboração aberta e segura, possibilitando que o paciente tenha registos mais ricos, atualizados e permitindo o surgimento de novas formas de criar e usar informação clínica ou complementar.Since their early adoption Electronic Health Records (EHR) have been evolving to cope with increasing requirements from institutions, professionals and, more recently, from patients. Citizens became more involved demanding successively more control over their records and an active role on their content. Mobility brought also new requirements, data become scattered over heterogeneous systems and formats, with increasing di culties on data sharing between distinct providers. To cope with these challenges several solutions appeared, mostly based on service level agreements between entities, regions and countries. They usually required de ning complex federated scenarios and left the patient outside the process. More recent approaches, such as personal health records (PHR), enable patient control although raises clinical integrity doubts to other actors, such as physicians. Also, information security risk increase as data travels outside controlled networks and systems. To overcome this, new solutions are needed to facilitate trustable collaboration between the diverse actors and systems. In this thesis we present a solution that enables a secure and open collaboration between all healthcare actors. It is based on a service-oriented architecture that deals with the clinical data using a closed envelope concept. The architecture was modeled with minimal functionality and privileges bearing in mind strong protection of data during transmission, processing and storing. The access control is made through patient policies and authentication uses electronic identi cation cards or similar certi cates, enabling auto-enrollment. All the components require mutual authentication and uses cyphering mechanisms to assure privacy. We also present a threat model to verify, through our solution, if possible threats were mitigated or if further re nement is needed. The proposed solution solves the problem of patient mobility and data dispersion, and empowers citizens to manage and collaborate in their personal healthcare information. It also permits open and secure collaboration, enabling the patient to have richer and up to date records that can foster new ways to generate and use clinical or complementary information
    corecore