5,564 research outputs found

    An efficient evolutionary algorithm for solving incrementally structured problems

    Get PDF
    Many real world problems have a structure where small problem instances are embedded within large problem instances, or where solution quality for large problem instances is loosely correlated to that of small problem instances. This structure can be exploited because smaller problem instances typically have smaller search spaces and are cheaper to evaluate. We present an evolutionary algorithm, INCREA, which is designed to incrementally solve a large, noisy, computationally expensive problem by deriving its initial population through recursively running itself on problem instances of smaller sizes. The INCREA algorithm also expands and shrinks its population each generation and cuts off work that doesn't appear to promise a fruitful result. For further efficiency, it addresses noisy solution quality efficiently by focusing on resolving it for small, potentially reusable solutions which have a much lower cost of evaluation. We compare INCREA to a general purpose evolutionary algorithm and find that in most cases INCREA arrives at the same solution in significantly less time.United States. Dept. of Energy (award DESC0005288

    Memetic Artificial Bee Colony Algorithm for Large-Scale Global Optimization

    Full text link
    Memetic computation (MC) has emerged recently as a new paradigm of efficient algorithms for solving the hardest optimization problems. On the other hand, artificial bees colony (ABC) algorithms demonstrate good performances when solving continuous and combinatorial optimization problems. This study tries to use these technologies under the same roof. As a result, a memetic ABC (MABC) algorithm has been developed that is hybridized with two local search heuristics: the Nelder-Mead algorithm (NMA) and the random walk with direction exploitation (RWDE). The former is attended more towards exploration, while the latter more towards exploitation of the search space. The stochastic adaptation rule was employed in order to control the balancing between exploration and exploitation. This MABC algorithm was applied to a Special suite on Large Scale Continuous Global Optimization at the 2012 IEEE Congress on Evolutionary Computation. The obtained results the MABC are comparable with the results of DECC-G, DECC-G*, and MLCC.Comment: CONFERENCE: IEEE Congress on Evolutionary Computation, Brisbane, Australia, 201

    Limited Evaluation Cooperative Co-evolutionary Differential Evolution for Large-scale Neuroevolution

    Get PDF
    Many real-world control and classification tasks involve a large number of features. When artificial neural networks (ANNs) are used for modeling these tasks, the network architectures tend to be large. Neuroevolution is an effective approach for optimizing ANNs; however, there are two bottlenecks that make their application challenging in case of high-dimensional networks using direct encoding. First, classic evolutionary algorithms tend not to scale well for searching large parameter spaces; second, the network evaluation over a large number of training instances is in general time-consuming. In this work, we propose an approach called the Limited Evaluation Cooperative Co-evolutionary Differential Evolution algorithm (LECCDE) to optimize high-dimensional ANNs. The proposed method aims to optimize the pre-synaptic weights of each post-synaptic neuron in different subpopulations using a Cooperative Co-evolutionary Differential Evolution algorithm, and employs a limited evaluation scheme where fitness evaluation is performed on a relatively small number of training instances based on fitness inheritance. We test LECCDE on three datasets with various sizes, and our results show that cooperative co-evolution significantly improves the test error comparing to standard Differential Evolution, while the limited evaluation scheme facilitates a significant reduction in computing time
    • …
    corecore