389 research outputs found

    Circuit designs for low-power and SEU-hardened systems

    Get PDF
    The desire to have smaller and faster portable devices is one of the primary motivations for technology scaling. Though advancements in device physics are moving at a very good pace, they might not be aggressive enough for now-a-day technology scaling trends. As a result, the MOS devices used for present day integrated circuits are pushed to the limit in terms of performance, power consumption and robustness, which are the most critical criteria for almost all applications. Secondly, technology advancements have led to design of complex chips with increasing chip densities and higher operating speeds. The design of such high performance complex chips (microprocessors, digital signal processors, etc) has massively increased the power dissipation and, as a result, the operating temperatures of these integrated circuits. In addition, due to the aggressive technology scaling the heat withstanding capabilities of the circuits is reducing, thereby increasing the cost of packaging and heat sink units. This led to the increase in prominence for smarter and more robust low-power circuit and system designs. Apart from power consumption, another criterion affected by technology scaling is robustness of the design, particularly for critical applications (security, medical, finance, etc). Thus, the need for error free or error immune designs. Until recently, radiation effects were a major concern in space applications only. With technology scaling reaching nanometer level, terrestrial radiation has become a growing concern. As a result Single Event Upsets (SEUs) have become a major challenge to robust designs. Single event upset is a temporary change in the state of a device due to a particle strike (usually from the radiation belts or from cosmic rays) which may manifest as an error at the output. This thesis proposes a novel method for adaptive digital designs to efficiently work with the lowest possible power consumption. This new technique improves options in performance, robustness and power. The thesis also proposes a new dual data rate flipflop, which reduces the necessary clock speed by half, drastically reducing the power consumption. This new dual data rate flip-flop design culminates in a proposed unique radiation hardened dual data rate flip-flop, Firebird\u27. Firebird offers a valuable addition to the future circuit designs, especially with the increasing importance of the Single Event Upsets (SEUs) and power dissipation with technology scaling.\u2

    An advanced Framework for efficient IC optimization based on analytical models engine

    Get PDF
    En base als reptes sorgits a conseqüència de l'escalat de la tecnologia, la present tesis desenvolupa i analitza un conjunt d'eines orientades a avaluar la sensibilitat a la propagació d'esdeveniments SET en circuits microelectrònics. S'han proposant varies mètriques de propagació de SETs considerant l'impacto dels emmascaraments lògic, elèctric i combinat lògic-elèctric. Aquestes mètriques proporcionen una via d'anàlisi per quantificar tant les regions més susceptibles a propagar SETs com les sortides més susceptibles de rebre'ls. S'ha desenvolupat un conjunt d'algorismes de cerca de camins sensibilitzables altament adaptables a múltiples aplicacions, un sistema lògic especific i diverses tècniques de simplificació de circuits. S'ha demostrat que el retard d'un camí donat depèn dels vectors de sensibilització aplicats a les portes que formen part del mateix, essent aquesta variació de retard comparable a la atribuïble a les variacions paramètriques del proces.En base a los desafíos surgidos a consecuencia del escalado de la tecnología, la presente tesis desarrolla y analiza un conjunto de herramientas orientadas a evaluar la sensibilidad a la propagación de eventos SET en circuitos microelectrónicos. Se han propuesto varias métricas de propagación de SETs considerando el impacto de los enmascaramientos lógico, eléctrico y combinado lógico-eléctrico. Estas métricas proporcionan una vía de análisis para cuantificar tanto las regiones más susceptibles a propagar eventos SET como las salidas más susceptibles a recibirlos. Ha sido desarrollado un conjunto de algoritmos de búsqueda de caminos sensibilizables altamente adaptables a múltiples aplicaciones, un sistema lógico especifico y diversas técnicas de simplificación de circuitos. Se ha demostrado que el retardo de un camino dado depende de los vectores de sensibilización aplicados a las puertas que forman parte del mismo, siendo esta variación de retardo comparable a la atribuible a las variaciones paramétricas del proceso.Based on the challenges arising as a result of technology scaling, this thesis develops and evaluates a complete framework for SET propagation sensitivity. The framework comprises a number of processing tools capable of handling circuits with high complexity in an efficient way. Various SET propagation metrics have been proposed considering the impact of logic, electric and combined logic-electric masking. Such metrics provide a valuable vehicle to grade either in-circuit regions being more susceptible of propagating SETs toward the circuit outputs or circuit outputs more susceptible to produce SET. A quite efficient and customizable true path finding algorithm with a specific logic system has been constructed and its efficacy demonstrated on large benchmark circuits. It has been shown that the delay of a path depends on the sensitization vectors applied to the gates within the path. In some cases, this variation is comparable to the one caused by process parameters variation

    SEU Sensitivity Comparison for Different Reprogrammable Technologies With Minority Check Block

    Get PDF
    In this work, a method is proposed for obtaining comparable measurements of the SEU sensitivity in reprogrammable devices that present different characteristics like internal architecture, technology, amount of available resources, etc. A specific minority checker is developed for reporting the presence of SEUs or MBUs which will help in this comparing task during dynamic tests.This work was supported in part by the Spanish Ministry of Science and Technology, code TEC2010-22095-C03-03. RENASER+ projec

    Low-Power and Error-Resilient VLSI Circuits and Systems.

    Full text link
    Efficient low-power operation is critically important for the success of the next-generation signal processing applications. Device and supply voltage have been continuously scaled to meet a more constrained power envelope, but scaling has created resiliency challenges, including increasing timing faults and soft errors. Our research aims at designing low-power and robust circuits and systems for signal processing by drawing circuit, architecture, and algorithm approaches. To gain an insight into the system faults due to supply voltage reduction, we researched the two primary effects that determine the minimum supply voltage (VMIN) in Intel’s tri-gate CMOS technology, namely process variations and gate-dielectric soft breakdown. We determined that voltage scaling increases the timing window that sequential circuits are vulnerable. Thus, we proposed a new hold-time violation metric to define hold-time VMIN, which has been adopted as a new design standard. Device scaling increases soft errors which affect circuit reliability. Through extensive soft error characterization using two 65nm CMOS test chips, we studied the soft error mechanisms and its dependence on supply voltage and clock frequency. This study laid the foundation of the first 65nm DSP chip design for a NASA spaceflight project. To mitigate such random errors, we proposed a new confidence-driven architecture that effectively enhances the error resiliency of deeply scaled CMOS and post-CMOS circuits. Designing low-power resilient systems can effectively leverage application-specific algorithmic approaches. To explore design opportunities in the algorithmic domain, we demonstrate an application-specific detection and decoding processor for multiple-input multiple-output (MIMO) wireless communication. To enhance the receive error rate for a robust wireless communication, we designed a joint detection and decoding technique by enclosing detection and decoding in an iterative loop to enhance both interference cancellation and error reduction. A proof-of-concept chip design was fabricated for the next-generation 4x4 256QAM MIMO systems. Through algorithm-architecture optimizations and low-power circuit techniques, our design achieves significant improvements in throughput, energy efficiency and error rate, paving the way for future developments in this area.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110323/1/uchchen_1.pd

    Single Event Effect Hardening Designs in 65nm CMOS Bulk Technology

    Get PDF
    Radiation from terrestrial and space environments is a great danger to integrated circuits (ICs). A single particle from a radiation environment strikes semiconductor materials resulting in voltage and current perturbation, where errors are induced. This phenomenon is termed a Single Event Effect (SEE). With the shrinking of transistor size, charge sharing between adjacent devices leads to less effectiveness of current radiation hardening methods. Improving fault-tolerance of storage cells and logic gates in advanced technologies becomes urgent and important. A new Single Event Upset (SEU) tolerant latch is proposed based on a previous hardened Quatro design. Soft error analysis tools are used and results show that the critical charge of the proposed design is approximately 2 times higher than that of the reference design with negligible penalty in area, delay, and power consumption. A test chip containing the proposed flip-flop chains was designed and exposed to alpha particles as well as heavy ions. Radiation experimental results indicate that the soft error rates of the proposed design are greatly reduced when Linear Energy Transfer (LET) is lower than 4, which makes it a suitable candidate for ground-level high reliability applications. To improve radiation tolerance of combinational circuits, two combinational logic gates are proposed. One is a layout-based hardening Cascode Voltage Switch Logic (CVSL) and the other is a fault-tolerant differential dynamic logic. Results from a SEE simulation tool indicate that the proposed CVSL has a higher critical charge, less cross section, and shorter Single Event Transient (SET) pulses when compared with reference designs. Simulation results also reveal that the proposed differential dynamic logic significantly reduces the SEU rate compared to traditional dynamic logic, and has a higher critical charge and shorter SET pulses than reference hardened design

    Reliable chip design from low powered unreliable components

    Get PDF
    The pace of technological improvement of the semiconductor market is driven by Moore’s Law, enabling chip transistor density to double every two years. The transistors would continue to decline in cost and size but increase in power. The continuous transistor scaling and extremely lower power constraints in modern Very Large Scale Integrated(VLSI) chips can potentially supersede the benefits of the technology shrinking due to reliability issues. As VLSI technology scales into nanoscale regime, fundamental physical limits are approached, and higher levels of variability, performance degradation, and higher rates of manufacturing defects are experienced. Soft errors, which traditionally affected only the memories, are now also resulting in logic circuit reliability degradation. A solution to these limitations is to integrate reliability assessment techniques into the Integrated Circuit(IC) design flow. This thesis investigates four aspects of reliability driven circuit design: a)Reliability estimation; b) Reliability optimization; c) Fault-tolerant techniques, and d) Delay degradation analysis. To guide the reliability driven synthesis and optimization of combinational circuits, highly accurate probability based reliability estimation methodology christened Conditional Probabilistic Error Propagation(CPEP) algorithm is developed to compute the impact of gate failures on the circuit output. CPEP guides the proposed rewriting based logic optimization algorithm employing local transformations. The main idea behind this methodology is to replace parts of the circuit with functionally equivalent but more reliable counterparts chosen from a precomputed subset of Negation-Permutation-Negation(NPN) classes of 4-variable functions. Cut enumeration and Boolean matching driven by reliability-aware optimization algorithm are used to identify the best possible replacement candidates. Experiments on a set of MCNC benchmark circuits and 8051 functional microcontroller units indicate that the proposed framework can achieve up to 75% reduction of output error probability. On average, about 14% SER reduction is obtained at the expense of very low area overhead of 6.57% that results in 13.52% higher power consumption. The next contribution of the research describes a novel methodology to design fault tolerant circuitry by employing the error correction codes known as Codeword Prediction Encoder(CPE). Traditional fault tolerant techniques analyze the circuit reliability issue from a static point of view neglecting the dynamic errors. In the context of communication and storage, the study of novel methods for reliable data transmission under unreliable hardware is an increasing priority. The idea of CPE is adapted from the field of forward error correction for telecommunications focusing on both encoding aspects and error correction capabilities. The proposed Augmented Encoding solution consists of computing an augmented codeword that contains both the codeword to be transmitted on the channel and extra parity bits. A Computer Aided Development(CAD) framework known as CPE simulator is developed providing a unified platform that comprises a novel encoder and fault tolerant LDPC decoders. Experiments on a set of encoders with different coding rates and different decoders indicate that the proposed framework can correct all errors under specific scenarios. On average, about 1000 times improvement in Soft Error Rate(SER) reduction is achieved. Last part of the research is the Inverse Gaussian Distribution(IGD) based delay model applicable to both combinational and sequential elements for sub-powered circuits. The Probability Density Function(PDF) based delay model accurately captures the delay behavior of all the basic gates in the library database. The IGD model employs these necessary parameters, and the delay estimation accuracy is demonstrated by evaluating multiple circuits. Experiments results indicate that the IGD based approach provides a high matching against HSPICE Monte Carlo simulation results, with an average error less than 1.9% and 1.2% for the 8-bit Ripple Carry Adder(RCA), and 8-bit De-Multiplexer(DEMUX) and Multiplexer(MUX) respectively
    corecore