449 research outputs found

    PHOABE : securely outsourcing multi-authority attribute based encryption with policy hidden for cloud assisted IoT

    Get PDF
    Attribute based encryption (ABE) is an encrypted access control mechanism that ensures efficient data sharing among dynamic group of users. Nevertheless, this encryption technique presents two main drawbacks, namely high decryption cost and publicly shared access policies, thus leading to possible users’ privacy leakage. In this paper, we introduce PHOABE, a Policy-Hidden Outsourced ABE scheme. Our construction presents several advantages. First, it is a multi-attribute authority ABE scheme. Second, the expensive computations for the ABE decryption process is partially delegated to a Semi Trusted Cloud Server. Third, users’ privacy is protected thanks to a hidden access policy. Fourth, PHOABE is proven to be selectively secure, verifiable and policy privacy preserving under the random oracle model. Five, estimation of the processing overhead proves its feasibility in IoT constrained environments

    Energy-efficient secure outsourcing decryption of attribute based encryption for mobile device in cloud computation

    Get PDF
    This is a copy of the author 's final draft version of an article published in the "Journal of ambient intelligence and humanized computing". The final publication is available at Springer via http://dx.doi.org/10.1007/s12652-017-0658-2In this paper two new ways for efficient secure outsourcing the decryption of key-policy attribute-based encryption (KP-ABE) with energy efficiency are proposed. Based on an observation about the permutation property of the access structure for the attribute based encryption schemes, we propose a high efficient way for outsourcing the decryption of KP-ABE, which is suitable for being used in mobile devices. But it can only be used for the ABE schemes having tree-like access structure for the self-enclosed system. The second way is motivated from the fact that almost all the previous work on outsourcing the decryption of KP-ABE cares little about the ciphertext length. Almost all the previous schemes for secure outsourcing the decryption of ABE have linear length ciphertext with the attributes or the policy. But transferring so long ciphertexts via wireless network for mobile phone can easily run out of battery power, therefore it can not be adapted to practical application scenarios. Thus another new scheme for outsourcing the decryption of ABE but with constant-size ciphertexts is proposed. Furthermore, our second proposal gives a new efficient way for secure outsourcing the decryptor’s secret key to the cloud, which need only one modular exponentiation while all the previous schemes need many. We evaluate the efficiency of our proposals and the results show that our proposals are practical.Peer ReviewedPostprint (author's final draft

    CUPS : Secure Opportunistic Cloud of Things Framework based on Attribute Based Encryption Scheme Supporting Access Policy Update

    Get PDF
    The ever‐growing number of internet connected devices, coupled with the new computing trends, namely within emerging opportunistic networks, engenders several security concerns. Most of the exchanged data between the internet of things (IoT) devices are not adequately secured due to resource constraints on IoT devices. Attribute‐based encryption is a promising cryptographic mechanism suitable for distributed environments, providing flexible access control to encrypted data contents. However, it imposes high decryption costs, and does not support access policy update, for highly dynamic environments. This paper presents CUPS, an ABE‐based framework for opportunistic cloud of things applications, that securely outsources data decryption process to edge nodes in order to reduce the computation overhead on the user side. CUPS allows end‐users to offload most of the decryption overhead to an edge node and verify the correctness of the received partially decrypted data from the edge node. Moreover, CUPS provides the access policy update feature with neither involving a proxy‐server, nor re‐encrypting the enciphered data contents and re‐distributing the users' secret keys. The access policy update feature in CUPS does not affect the size of the message received by the end‐user, which reduces the bandwidth and the storage usage. Our comprehensive theoretical analysis proves that CUPS outperforms existing schemes in terms of functionality, communication and computation overheads

    Aggregation of Key with Searchable Encryption for Group Data Sharing

    Get PDF
    Data sharing is an important functionality in cloud storage. In this article, we show how to securely, efficiently, and flexibly share data with others in cloud storage. We describe new public-key cryptosystems which produce constant-size ciphertexts such that efficient delegation of decryption rights for any set of ciphertexts are possible. The novelty is that one can aggregate any set of secret keys and make them as compact as a single key, but encompassing the power of all the keys being aggregated. In other words, the secret key holder can release a constant-size aggregate key for flexible choices of ciphertext set in cloud storage, but the other encrypted files outside the set remain confidential. This compact aggregate key can be conveniently sent to others or be stored in a smart card with very limited secure storage. We provide formal security analysis of our schemes in the standard model. We also describe other application of our schemes. In particular, our schemes give the first public-key patient-controlled encryption for flexible hierarchy, which was yet to be known

    Attribute-based encryption for cloud computing access control: A survey

    Get PDF
    National Research Foundation (NRF) Singapore; AXA Research Fun
    • 

    corecore