8,350 research outputs found

    A Relaxation Scheme for Mesh Locality in Computer Vision.

    Get PDF
    Parallel processing has been considered as the key to build computer systems of the future and has become a mainstream subject in Computer Science. Computer Vision applications are computationally intensive that require parallel approaches to exploit the intrinsic parallelism. This research addresses this problem for low-level and intermediate-level vision problems. The contributions of this dissertation are a unified scheme based on probabilistic relaxation labeling that captures localities of image data and the ability of using this scheme to develop efficient parallel algorithms for Computer Vision problems. We begin with investigating the problem of skeletonization. The technique of pattern match that exhausts all the possible interaction patterns between a pixel and its neighboring pixels captures the locality of this problem, and leads to an efficient One-pass Parallel Asymmetric Thinning Algorithm (OPATA\sb8). The use of 8-distance in this algorithm, or chessboard distance, not only improves the quality of the resulting skeletons, but also improves the efficiency of the computation. This new algorithm plays an important role in a hierarchical route planning system to extract high level typological information of cross-country mobility maps which greatly speeds up the route searching over large areas. We generalize the neighborhood interaction description method to include more complicated applications such as edge detection and image restoration. The proposed probabilistic relaxation labeling scheme exploit parallelism by discovering local interactions in neighboring areas and by describing them effectively. The proposed scheme consists of a transformation function and a dictionary construction method. The non-linear transformation function is derived from Markov Random Field theory. It efficiently combines evidences from neighborhood interactions. The dictionary construction method provides an efficient way to encode these localities. A case study applies the scheme to the problem of edge detection. The relaxation step of this edge-detection algorithm greatly reduces noise effects, gets better edge localization such as line ends and corners, and plays a crucial rule in refining edge outputs. The experiments on both synthetic and natural images show that our algorithm converges quickly, and is robust in noisy environment

    Parallel algorithm for determining motion vectors in ice floe images by matching edge features

    Get PDF
    A parallel algorithm is described to determine motion vectors of ice floes using time sequences of images of the Arctic ocean obtained from the Synthetic Aperture Radar (SAR) instrument flown on-board the SEASAT spacecraft. Researchers describe a parallel algorithm which is implemented on the MPP for locating corresponding objects based on their translationally and rotationally invariant features. The algorithm first approximates the edges in the images by polygons or sets of connected straight-line segments. Each such edge structure is then reduced to a seed point. Associated with each seed point are the descriptions (lengths, orientations and sequence numbers) of the lines constituting the corresponding edge structure. A parallel matching algorithm is used to match packed arrays of such descriptions to identify corresponding seed points in the two images. The matching algorithm is designed such that fragmentation and merging of ice floes are taken into account by accepting partial matches. The technique has been demonstrated to work on synthetic test patterns and real image pairs from SEASAT in times ranging from .5 to 0.7 seconds for 128 x 128 images

    Fusion of Head and Full-Body Detectors for Multi-Object Tracking

    Full text link
    In order to track all persons in a scene, the tracking-by-detection paradigm has proven to be a very effective approach. Yet, relying solely on a single detector is also a major limitation, as useful image information might be ignored. Consequently, this work demonstrates how to fuse two detectors into a tracking system. To obtain the trajectories, we propose to formulate tracking as a weighted graph labeling problem, resulting in a binary quadratic program. As such problems are NP-hard, the solution can only be approximated. Based on the Frank-Wolfe algorithm, we present a new solver that is crucial to handle such difficult problems. Evaluation on pedestrian tracking is provided for multiple scenarios, showing superior results over single detector tracking and standard QP-solvers. Finally, our tracker ranks 2nd on the MOT16 benchmark and 1st on the new MOT17 benchmark, outperforming over 90 trackers.Comment: 10 pages, 4 figures; Winner of the MOT17 challenge; CVPRW 201

    Tracking Dynamic Features in Image Sequences.

    Get PDF
    This dissertation deals with detecting and tracking dynamic features in image sequences using digital image analysis algorithms. The tracking problem is complicated in oceanographic images due to the dynamic nature of the features. Specifically, the features of interest move, change size and shape. In the first part of the dissertation, the design and development of a new segmentation algorithm, Histogram-based Morphological Edge Detector (HMED), is presented. Mathematical morphology has been used in the past to develop efficient and robust edge detectors. But these morphological edge detectors do not extract weak gradient edge pixels, and they introduce spurious edge pixels. The primary reason for this is due to the fact that the morphological operations are defined in the domain of a pixel\u27s neighborhood. HMED defines new operations, namely H-dilation and H-erosion, which are defined in the domain of the histogram of the pixel\u27s neighborhood. The motivation for incorporating the histogram into the dilation and erosion is primarily due to the rich information content in the histogram compared to the one available in the pixel\u27s neighborhood. As a result, HMED extracts weak gradient pixels while suppressing the spurious edge pixels. An extensive comparison of all morphological edge detectors in the context of oceanographic digital images is also presented. In the second part of the dissertation, a new augmented region and edge segmentation technique for the interpretation of oceanographic features present in the AVHRR image is presented. The augmented technique uses a topography-based method that extracts topolographical labels such as concave, convex and flat pixels from the image. In this technique, first a bicubic polynomial is fitted to a pixel and its neighborhood, and topolographical label is assigned based on the first and second directional derivatives of the polynomial surface. Second, these labeled pixels are grouped and assembled into edges and regions. The augmented technique blends the edge and region information on a proximity based criterion to detect the features. A number of experimental results are also provided to show the significant improvement in tracking the features using the augmented technique over other previously designed techniques

    Node Classification in Uncertain Graphs

    Full text link
    In many real applications that use and analyze networked data, the links in the network graph may be erroneous, or derived from probabilistic techniques. In such cases, the node classification problem can be challenging, since the unreliability of the links may affect the final results of the classification process. If the information about link reliability is not used explicitly, the classification accuracy in the underlying network may be affected adversely. In this paper, we focus on situations that require the analysis of the uncertainty that is present in the graph structure. We study the novel problem of node classification in uncertain graphs, by treating uncertainty as a first-class citizen. We propose two techniques based on a Bayes model and automatic parameter selection, and show that the incorporation of uncertainty in the classification process as a first-class citizen is beneficial. We experimentally evaluate the proposed approach using different real data sets, and study the behavior of the algorithms under different conditions. The results demonstrate the effectiveness and efficiency of our approach

    Structural matching by discrete relaxation

    Get PDF
    This paper describes a Bayesian framework for performing relational graph matching by discrete relaxation. Our basic aim is to draw on this framework to provide a comparative evaluation of a number of contrasting approaches to relational matching. Broadly speaking there are two main aspects to this study. Firstly we locus on the issue of how relational inexactness may be quantified. We illustrate that several popular relational distance measures can be recovered as specific limiting cases of the Bayesian consistency measure. The second aspect of our comparison concerns the way in which structural inexactness is controlled. We investigate three different realizations ai the matching process which draw on contrasting control models. The main conclusion of our study is that the active process of graph-editing outperforms the alternatives in terms of its ability to effectively control a large population of contaminating clutter

    Maximized Posteriori Attributes Selection from Facial Salient Landmarks for Face Recognition

    Full text link
    This paper presents a robust and dynamic face recognition technique based on the extraction and matching of devised probabilistic graphs drawn on SIFT features related to independent face areas. The face matching strategy is based on matching individual salient facial graph characterized by SIFT features as connected to facial landmarks such as the eyes and the mouth. In order to reduce the face matching errors, the Dempster-Shafer decision theory is applied to fuse the individual matching scores obtained from each pair of salient facial features. The proposed algorithm is evaluated with the ORL and the IITK face databases. The experimental results demonstrate the effectiveness and potential of the proposed face recognition technique also in case of partially occluded faces.Comment: 8 pages, 2 figure
    corecore