254 research outputs found

    Model-driven dual caching For nomadic service-oriented architecture clients

    Get PDF
    Mobile devices have evolved over the years from resource constrained devices that supported only the most basic tasks to powerful handheld computing devices. However, the most significant step in the evolution of mobile devices was the introduction of wireless connectivity which enabled them to host applications that require internet connectivity such as email, web browsers and maybe most importantly smart/rich clients. Being able to host smart clients allows the users of mobile devices to seamlessly access the Information Technology (IT) resources of their organizations. One increasingly popular way of enabling access to IT resources is by using Web Services (WS). This trend has been aided by the rapid availability of WS packages/tools, most notably the efforts of the Apache group and Integrated Development Environment (IDE) vendors. But the widespread use of WS raises questions for users of mobile devices such as laptops or PDAs; how and if they can participate in WS. Unlike their “wired” counterparts (desktop computers and servers) they rely on a wireless network that is characterized by low bandwidth and unreliable connectivity.The aim of this thesis is to enable mobile devices to host Web Services consumers. It introduces a Model-Driven Dual Caching (MDDC) approach to overcome problems arising from temporarily loss of connectivity and fluctuations in bandwidth

    Using cooperation to improve the experience of web services consumers

    Get PDF
    Web Services (WS) are one of the most promising approaches for building loosely coupled systems. However, due to the heterogeneous and dynamic nature of the WS environment, ensuring good QoS is still non-trivial. While WS tend to scale better than tightly coupled systems, they introduce a larger communication overhead and are more susceptible to server/resource latency. Traditionally this problem has been addressed by relying on negotiated Service Level Agreement to ensure the required QoS, or the development of elaborate compensation handlers to minimize the impact of undesirable latency. This research focuses on the use of cooperation between consumers and providers as an effective means of optimizing resource utilization and consumer experiences. It introduces a novel cooperative approach to implement the cooperation between consumers and providers

    Mobile cloud computing

    Get PDF
    As mobile network infrastructures continuously improve, they are becoming popular clients to consume any Web resources, especially Web Services (WS). However, there are problems in connecting mobile devices to existing WS. This thesis focuses on three of the following challenge: loss of connection, bandwidth/latency, and limited resources. This research implements and develops a cross-platform architecture for connecting mobile devices to the WS. The architecture includes a platform independent design of mobile service client and a middleware for enhancing the interaction between mobile clients and WS. The middleware also provides a personal service mashup platform for the mobile client. Finally, the middleware can be deployed on Cloud Platforms, like Google App Engine and Amazon EC2, to enhance the scalability and reliability. The experiments evaluate the optimization/adaptation, overhead of the middleware, middleware pushing via email, and performance of Cloud Platforms

    Building Internet caching systems for streaming media delivery

    Get PDF
    The proxy has been widely and successfully used to cache the static Web objects fetched by a client so that the subsequent clients requesting the same Web objects can be served directly from the proxy instead of other sources faraway, thus reducing the server\u27s load, the network traffic and the client response time. However, with the dramatic increase of streaming media objects emerging on the Internet, the existing proxy cannot efficiently deliver them due to their large sizes and client real time requirements.;In this dissertation, we design, implement, and evaluate cost-effective and high performance proxy-based Internet caching systems for streaming media delivery. Addressing the conflicting performance objectives for streaming media delivery, we first propose an efficient segment-based streaming media proxy system model. This model has guided us to design a practical streaming proxy, called Hyper-Proxy, aiming at delivering the streaming media data to clients with minimum playback jitter and a small startup latency, while achieving high caching performance. Second, we have implemented Hyper-Proxy by leveraging the existing Internet infrastructure. Hyper-Proxy enables the streaming service on the common Web servers. The evaluation of Hyper-Proxy on the global Internet environment and the local network environment shows it can provide satisfying streaming performance to clients while maintaining a good cache performance. Finally, to further improve the streaming delivery efficiency, we propose a group of the Shared Running Buffers (SRB) based proxy caching techniques to effectively utilize proxy\u27s memory. SRB algorithms can significantly reduce the media server/proxy\u27s load and network traffic and relieve the bottlenecks of the disk bandwidth and the network bandwidth.;The contributions of this dissertation are threefold: (1) we have studied several critical performance trade-offs and provided insights into Internet media content caching and delivery. Our understanding further leads us to establish an effective streaming system optimization model; (2) we have designed and evaluated several efficient algorithms to support Internet streaming content delivery, including segment caching, segment prefetching, and memory locality exploitation for streaming; (3) having addressed several system challenges, we have successfully implemented a real streaming proxy system and deployed it in a large industrial enterprise

    POLICY-BASED MIDDLEWARE FOR MOBILE CLOUD COMPUTING

    Get PDF
    Mobile devices are the dominant interface for interacting with online services as well as an efficient platform for cloud data consumption. Cloud computing allows the delivery of applications/functionalities as services over the internet and provides the software/hardware infrastructure to host these services in a scalable manner. In mobile cloud computing, the apps running on the mobile device use cloud hosted services to overcome resource constraints of the host device. This approach allows mobile devices to outsource the resource-consuming tasks. Furthermore, as the number of devices owned by a single user increases, there is the growing demand for cross-platform application deployment to ensure a consistent user experience. However, the mobile devices communicate through unstable wireless networks, to access the data and services hosted in the cloud. The major challenges that mobile clients face when accessing services hosted in the cloud, are network latency and synchronization of data. To address the above mentioned challenges, this research proposed an architecture which introduced a policy-based middleware that supports user to access cloud hosted digital assets and services via an application across multiple mobile devices in a seamless manner. The major contribution of this thesis is identifying different information, used to configure the behavior of the middleware towards reliable and consistent communication among mobile clients and the cloud hosted services. Finally, the advantages of the using policy-based middleware architecture are illustrated by experiments conducted on a proof-of-concept prototype

    Support infrastructures for multimedia services with guaranteed continuity and QoS

    Get PDF
    Advances in wireless networking and content delivery systems are enabling new challenging provisioning scenarios where a growing number of users access multimedia services, e.g., audio/video streaming, while moving among different points of attachment to the Internet, possibly with different connectivity technologies, e.g., Wi-Fi, Bluetooth, and cellular 3G. That calls for novel middlewares capable of dynamically personalizing service provisioning to the characteristics of client environments, in particular to discontinuities in wireless resource availability due to handoffs. This dissertation proposes a novel middleware solution, called MUM, that performs effective and context-aware handoff management to transparently avoid service interruptions during both horizontal and vertical handoffs. To achieve the goal, MUM exploits the full visibility of wireless connections available in client localities and their handoff implementations (handoff awareness), of service quality requirements and handoff-related quality degradations (QoS awareness), and of network topology and resources available in current/future localities (location awareness). The design and implementation of the all main MUM components along with extensive on the field trials of the realized middleware architecture confirmed the validity of the proposed full context-aware handoff management approach. In particular, the reported experimental results demonstrate that MUM can effectively maintain service continuity for a wide range of different multimedia services by exploiting handoff prediction mechanisms, adaptive buffering and pre-fetching techniques, and proactive re-addressing/re-binding
    • …
    corecore