286 research outputs found

    Depth map compression via 3D region-based representation

    Get PDF
    In 3D video, view synthesis is used to create new virtual views between encoded camera views. Errors in the coding of the depth maps introduce geometry inconsistencies in synthesized views. In this paper, a new 3D plane representation of the scene is presented which improves the performance of current standard video codecs in the view synthesis domain. Two image segmentation algorithms are proposed for generating a color and depth segmentation. Using both partitions, depth maps are segmented into regions without sharp discontinuities without having to explicitly signal all depth edges. The resulting regions are represented using a planar model in the 3D world scene. This 3D representation allows an efficient encoding while preserving the 3D characteristics of the scene. The 3D planes open up the possibility to code multiview images with a unique representation.Postprint (author's final draft

    High-Level Synthesis Based VLSI Architectures for Video Coding

    Get PDF
    High Efficiency Video Coding (HEVC) is state-of-the-art video coding standard. Emerging applications like free-viewpoint video, 360degree video, augmented reality, 3D movies etc. require standardized extensions of HEVC. The standardized extensions of HEVC include HEVC Scalable Video Coding (SHVC), HEVC Multiview Video Coding (MV-HEVC), MV-HEVC+ Depth (3D-HEVC) and HEVC Screen Content Coding. 3D-HEVC is used for applications like view synthesis generation, free-viewpoint video. Coding and transmission of depth maps in 3D-HEVC is used for the virtual view synthesis by the algorithms like Depth Image Based Rendering (DIBR). As first step, we performed the profiling of the 3D-HEVC standard. Computational intensive parts of the standard are identified for the efficient hardware implementation. One of the computational intensive part of the 3D-HEVC, HEVC and H.264/AVC is the Interpolation Filtering used for Fractional Motion Estimation (FME). The hardware implementation of the interpolation filtering is carried out using High-Level Synthesis (HLS) tools. Xilinx Vivado Design Suite is used for the HLS implementation of the interpolation filters of HEVC and H.264/AVC. The complexity of the digital systems is greatly increased. High-Level Synthesis is the methodology which offers great benefits such as late architectural or functional changes without time consuming in rewriting of RTL-code, algorithms can be tested and evaluated early in the design cycle and development of accurate models against which the final hardware can be verified

    3D video compression based on high efficiency video coding

    Get PDF
    With the advent of autostereoscopic displays, questions rise on how to efficiently compress the video information needed by such displays. Additionally, for gradual market acceptance of this new technology it is valuable to have a solution offering forward compatibility with stereo 3D video as it is used nowadays. In this paper, a multiview compression scheme making use of the efficient single-view coding tools used in High Efficiency Video Coding (HEVC) is provided. Although efficient single view compression can be obtained with HEVC, a multiview adaptation of this standard under development is proposed, offering additional coding gains. On average, for the texture information, the total bitrate can be reduced by 37.2% compared to simulcast HEVC. For depth map compression, gains largely depend on the quality of the captured content. Additionally, a forward compatible solution is proposed offering the possibility for a gradual upgrade from H.264/AVC based stereoscopic 3D systems to an HEVC-based autostereoscopic environment. With the proposed system, significant rate savings compared to Multiview Video Coding (MVC) are presented(1)

    Maximum-Entropy-Model-Enabled Complexity Reduction Algorithm in Modern Video Coding Standards

    Get PDF
    Symmetry considerations play a key role in modern science, and any differentiable symmetry of the action of a physical system has a corresponding conservation law. Symmetry may be regarded as reduction of Entropy. This work focuses on reducing the computational complexity of modern video coding standards by using the maximum entropy principle. The high computational complexity of the coding unit (CU) size decision in modern video coding standards is a critical challenge for real-time applications. This problem is solved in a novel approach considering CU termination, skip, and normal decisions as three-class making problems. The maximum entropy model (MEM) is formulated to the CU size decision problem, which can optimize the conditional entropy; the improved iterative scaling (IIS) algorithm is used to solve this optimization problem. The classification features consist of the spatio-temporal information of the CU, including the rate–distortion (RD) cost, coded block flag (CBF), and depth. For the case analysis, the proposed method is based on High Efficiency Video Coding (H.265/HEVC) standards. The experimental results demonstrate that the proposed method can reduce the computational complexity of the H.265/HEVC encoder significantly. Compared with the H.265/HEVC reference model, the proposed method can reduce the average encoding time by 53.27% and 56.36% under low delay and random access configurations, while Bjontegaard Delta Bit Rates (BD-BRs) are 0.72% and 0.93% on average

    Compression vidéo basée sur l'exploitation d'un décodeur intelligent

    Get PDF
    This Ph.D. thesis studies the novel concept of Smart Decoder (SDec) where the decoder is given the ability to simulate the encoder and is able to conduct the R-D competition similarly as in the encoder. The proposed technique aims to reduce the signaling of competing coding modes and parameters. The general SDec coding scheme and several practical applications are proposed, followed by a long-term approach exploiting machine learning concept in video coding. The SDec coding scheme exploits a complex decoder able to reproduce the choice of the encoder based on causal references, eliminating thus the need to signal coding modes and associated parameters. Several practical applications of the general outline of the SDec scheme are tested, using different coding modes during the competition on the reference blocs. Despite the choice for the SDec reference block being still simple and limited, interesting gains are observed. The long-term research presents an innovative method that further makes use of the processing capacity of the decoder. Machine learning techniques are exploited in video coding with the purpose of reducing the signaling overhead. Practical applications are given, using a classifier based on support vector machine to predict coding modes of a block. The block classification uses causal descriptors which consist of different types of histograms. Significant bit rate savings are obtained, which confirms the potential of the approach.Cette thèse de doctorat étudie le nouveau concept de décodeur intelligent (SDec) dans lequel le décodeur est doté de la possibilité de simuler l’encodeur et est capable de mener la compétition R-D de la même manière qu’au niveau de l’encodeur. Cette technique vise à réduire la signalisation des modes et des paramètres de codage en compétition. Le schéma général de codage SDec ainsi que plusieurs applications pratiques sont proposées, suivis d’une approche en amont qui exploite l’apprentissage automatique pour le codage vidéo. Le schéma de codage SDec exploite un décodeur complexe capable de reproduire le choix de l’encodeur calculé sur des blocs de référence causaux, éliminant ainsi la nécessité de signaler les modes de codage et les paramètres associés. Plusieurs applications pratiques du schéma SDec sont testées, en utilisant différents modes de codage lors de la compétition sur les blocs de référence. Malgré un choix encore simple et limité des blocs de référence, les gains intéressants sont observés. La recherche en amont présente une méthode innovante qui permet d’exploiter davantage la capacité de traitement d’un décodeur. Les techniques d’apprentissage automatique sont exploitées pour but de réduire la signalisation. Les applications pratiques sont données, utilisant un classificateur basé sur les machines à vecteurs de support pour prédire les modes de codage d’un bloc. La classification des blocs utilise des descripteurs causaux qui sont formés à partir de différents types d’histogrammes. Des gains significatifs en débit sont obtenus, confirmant ainsi le potentiel de l’approche

    Packet loss visibility across SD, HD, 3D, and UHD video streams

    Get PDF
    The trend towards video streaming with increased spatial resolutions and dimensions, SD, HD, 3D, and 4kUHD, even for portable devices has important implications for displayed video quality. There is an interplay between packetization, packet loss visibility, choice of codec, and viewing conditions, which implies that prior studies at lower resolutions may not be as relevant. This paper presents two sets of experiments, the one at a Variable BitRate (VBR) and the other at a Constant BitRate (CBR), which highlight different aspects of the interpretation. The latter experiments also compare and contrast encoding with either an H.264 or an High Efficiency Video Coding (HEVC) codec, with all results recorded as objective Mean Opinion Score (MOS). The video quality assessments will be of interest to those considering: the bitrates and expected quality in error-prone environments; or, in fact, whether to use a reliable transport protocol to prevent all errors, at a cost in jitter and latency, rather than tolerate low levels of packet errors

    Scalable light field representation and coding

    Get PDF
    This Thesis aims to advance the state-of-the-art in light field representation and coding. In this context, proposals to improve functionalities like light field random access and scalability are also presented. As the light field representation constrains the coding approach to be used, several light field coding techniques to exploit the inherent characteristics of the most popular types of light field representations are proposed and studied, which are normally based on micro-images or sub-aperture-images. To encode micro-images, two solutions are proposed, aiming to exploit the redundancy between neighboring micro-images using a high order prediction model, where the model parameters are either explicitly transmitted or inferred at the decoder, respectively. In both cases, the proposed solutions are able to outperform low order prediction solutions. To encode sub-aperture-images, an HEVC-based solution that exploits their inherent intra and inter redundancies is proposed. In this case, the light field image is encoded as a pseudo video sequence, where the scanning order is signaled, allowing the encoder and decoder to optimize the reference picture lists to improve coding efficiency. A novel hybrid light field representation coding approach is also proposed, by exploiting the combined use of both micro-image and sub-aperture-image representation types, instead of using each representation individually. In order to aid the fast deployment of the light field technology, this Thesis also proposes scalable coding and representation approaches that enable adequate compatibility with legacy displays (e.g., 2D, stereoscopic or multiview) and with future light field displays, while maintaining high coding efficiency. Additionally, viewpoint random access, allowing to improve the light field navigation and to reduce the decoding delay, is also enabled with a flexible trade-off between coding efficiency and viewpoint random access.Esta Tese tem como objetivo avançar o estado da arte em representação e codificação de campos de luz. Neste contexto, são também apresentadas propostas para melhorar funcionalidades como o acesso aleatório ao campo de luz e a escalabilidade. Como a representação do campo de luz limita a abordagem de codificação a ser utilizada, são propostas e estudadas várias técnicas de codificação de campos de luz para explorar as características inerentes aos seus tipos mais populares de representação, que são normalmente baseadas em micro-imagens ou imagens de sub-abertura. Para codificar as micro-imagens, são propostas duas soluções, visando explorar a redundância entre micro-imagens vizinhas utilizando um modelo de predição de alta ordem, onde os parâmetros do modelo são explicitamente transmitidos ou inferidos no decodificador, respetivamente. Em ambos os casos, as soluções propostas são capazes de superar as soluções de predição de baixa ordem. Para codificar imagens de sub-abertura, é proposta uma solução baseada em HEVC que explora a inerente redundância intra e inter deste tipo de imagens. Neste caso, a imagem do campo de luz é codificada como uma pseudo-sequência de vídeo, onde a ordem de varrimento é sinalizada, permitindo ao codificador e decodificador otimizar as listas de imagens de referência para melhorar a eficiência da codificação. Também é proposta uma nova abordagem de codificação baseada na representação híbrida do campo de luz, explorando o uso combinado dos tipos de representação de micro-imagem e sub-imagem, em vez de usar cada representação individualmente. A fim de facilitar a rápida implantação da tecnologia de campo de luz, esta Tese também propõe abordagens escaláveis de codificação e representação que permitem uma compatibilidade adequada com monitores tradicionais (e.g., 2D, estereoscópicos ou multivista) e com futuros monitores de campo de luz, mantendo ao mesmo tempo uma alta eficiência de codificação. Além disso, o acesso aleatório de pontos de vista, permitindo melhorar a navegação no campo de luz e reduzir o atraso na descodificação, também é permitido com um equilíbrio flexível entre eficiência de codificação e acesso aleatório de pontos de vista

    3D coding tools final report

    Get PDF
    Livrable D4.3 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D4.3 du projet. Son titre : 3D coding tools final repor
    • …
    corecore