1,901 research outputs found

    Local Stereo Matching Using Adaptive Local Segmentation

    Get PDF
    We propose a new dense local stereo matching framework for gray-level images based on an adaptive local segmentation using a dynamic threshold. We define a new validity domain of the fronto-parallel assumption based on the local intensity variations in the 4-neighborhood of the matching pixel. The preprocessing step smoothes low textured areas and sharpens texture edges, whereas the postprocessing step detects and recovers occluded and unreliable disparities. The algorithm achieves high stereo reconstruction quality in regions with uniform intensities as well as in textured regions. The algorithm is robust against local radiometrical differences; and successfully recovers disparities around the objects edges, disparities of thin objects, and the disparities of the occluded region. Moreover, our algorithm intrinsically prevents errors caused by occlusion to propagate into nonoccluded regions. It has only a small number of parameters. The performance of our algorithm is evaluated on the Middlebury test bed stereo images. It ranks highly on the evaluation list outperforming many local and global stereo algorithms using color images. Among the local algorithms relying on the fronto-parallel assumption, our algorithm is the best ranked algorithm. We also demonstrate that our algorithm is working well on practical examples as for disparity estimation of a tomato seedling and a 3D reconstruction of a face

    Depth mapping of integral images through viewpoint image extraction with a hybrid disparity analysis algorithm

    Get PDF
    Integral imaging is a technique capable of displaying 3–D images with continuous parallax in full natural color. It is one of the most promising methods for producing smooth 3–D images. Extracting depth information from integral image has various applications ranging from remote inspection, robotic vision, medical imaging, virtual reality, to content-based image coding and manipulation for integral imaging based 3–D TV. This paper presents a method of generating a depth map from unidirectional integral images through viewpoint image extraction and using a hybrid disparity analysis algorithm combining multi-baseline, neighbourhood constraint and relaxation strategies. It is shown that a depth map having few areas of uncertainty can be obtained from both computer and photographically generated integral images using this approach. The acceptable depth maps can be achieved from photographic captured integral images containing complicated object scene

    Locally Adaptive Stereo Vision Based 3D Visual Reconstruction

    Get PDF
    abstract: Using stereo vision for 3D reconstruction and depth estimation has become a popular and promising research area as it has a simple setup with passive cameras and relatively efficient processing procedure. The work in this dissertation focuses on locally adaptive stereo vision methods and applications to different imaging setups and image scenes. Solder ball height and substrate coplanarity inspection is essential to the detection of potential connectivity issues in semi-conductor units. Current ball height and substrate coplanarity inspection tools are expensive and slow, which makes them difficult to use in a real-time manufacturing setting. In this dissertation, an automatic, stereo vision based, in-line ball height and coplanarity inspection method is presented. The proposed method includes an imaging setup together with a computer vision algorithm for reliable, in-line ball height measurement. The imaging setup and calibration, ball height estimation and substrate coplanarity calculation are presented with novel stereo vision methods. The results of the proposed method are evaluated in a measurement capability analysis (MCA) procedure and compared with the ground-truth obtained by an existing laser scanning tool and an existing confocal inspection tool. The proposed system outperforms existing inspection tools in terms of accuracy and stability. In a rectified stereo vision system, stereo matching methods can be categorized into global methods and local methods. Local stereo methods are more suitable for real-time processing purposes with competitive accuracy as compared with global methods. This work proposes a stereo matching method based on sparse locally adaptive cost aggregation. In order to reduce outlier disparity values that correspond to mis-matches, a novel sparse disparity subset selection method is proposed by assigning a significance status to candidate disparity values, and selecting the significant disparity values adaptively. An adaptive guided filtering method using the disparity subset for refined cost aggregation and disparity calculation is demonstrated. The proposed stereo matching algorithm is tested on the Middlebury and the KITTI stereo evaluation benchmark images. A performance analysis of the proposed method in terms of the I0 norm of the disparity subset is presented to demonstrate the achieved efficiency and accuracy.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    NOVEL DENSE STEREO ALGORITHMS FOR HIGH-QUALITY DEPTH ESTIMATION FROM IMAGES

    Get PDF
    This dissertation addresses the problem of inferring scene depth information from a collection of calibrated images taken from different viewpoints via stereo matching. Although it has been heavily investigated for decades, depth from stereo remains a long-standing challenge and popular research topic for several reasons. First of all, in order to be of practical use for many real-time applications such as autonomous driving, accurate depth estimation in real-time is of great importance and one of the core challenges in stereo. Second, for applications such as 3D reconstruction and view synthesis, high-quality depth estimation is crucial to achieve photo realistic results. However, due to the matching ambiguities, accurate dense depth estimates are difficult to achieve. Last but not least, most stereo algorithms rely on identification of corresponding points among images and only work effectively when scenes are Lambertian. For non-Lambertian surfaces, the brightness constancy assumption is no longer valid. This dissertation contributes three novel stereo algorithms that are motivated by the specific requirements and limitations imposed by different applications. In addressing high speed depth estimation from images, we present a stereo algorithm that achieves high quality results while maintaining real-time performance. We introduce an adaptive aggregation step in a dynamic-programming framework. Matching costs are aggregated in the vertical direction using a computationally expensive weighting scheme based on color and distance proximity. We utilize the vector processing capability and parallelism in commodity graphics hardware to speed up this process over two orders of magnitude. In addressing high accuracy depth estimation, we present a stereo model that makes use of constraints from points with known depths - the Ground Control Points (GCPs) as referred to in stereo literature. Our formulation explicitly models the influences of GCPs in a Markov Random Field. A novel regularization prior is naturally integrated into a global inference framework in a principled way using the Bayes rule. Our probabilistic framework allows GCPs to be obtained from various modalities and provides a natural way to integrate information from various sensors. In addressing non-Lambertian reflectance, we introduce a new invariant for stereo correspondence which allows completely arbitrary scene reflectance (bidirectional reflectance distribution functions - BRDFs). This invariant can be used to formulate a rank constraint on stereo matching when the scene is observed by several lighting configurations in which only the lighting intensity varies

    Stereo matching based on absolute differences for multiple objects detection

    Get PDF
    This article presents a new algorithm for object detection using stereo camera system. The problem to get an accurate object detion using stereo camera is the imprecise of matching process between two scenes with the same viewpoint. Hence, this article aims to reduce the incorrect matching pixel with four stages. This new algorithm is the combination of continuous process of matching cost computation, aggregation, optimization and filtering. The first stage is matching cost computation to acquire preliminary result using an absolute differences method. Then the second stage known as aggregation step uses a guided filter with fixed window support size. After that, the optimization stage uses winner-takes-all (WTA) approach which selects the smallest matching differences value and normalized it to the disparity level. The last stage in the framework uses a bilateral filter. It is effectively further decrease the error on the disparity map which contains information of object detection and locations. The proposed work produces low errors (i.e., 12.11% and 14.01% nonocc and all errors) based on the KITTI dataset and capable to perform much better compared with before the proposed framework and competitive with some newly available methods

    A joint motion & disparity motion estimation technique for 3D integral video compression using evolutionary strategy

    Get PDF
    3D imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging, which can capture true 3D color images with only one camera, has been seen as the right technology to offer stress-free viewing to audiences of more than one person. Just like any digital video, 3D video sequences must also be compressed in order to make it suitable for consumer domain applications. However, ordinary compression techniques found in state-of-the-art video coding standards such as H.264, MPEG-4 and MPEG-2 are not capable of producing enough compression while preserving the 3D clues. Fortunately, a huge amount of redundancies can be found in an integral video sequence in terms of motion and disparity. This paper discusses a novel approach to use both motion and disparity information to compress 3D integral video sequences. We propose to decompose the integral video sequence down to viewpoint video sequences and jointly exploit motion and disparity redundancies to maximize the compression. We further propose an optimization technique based on evolutionary strategies to minimize the computational complexity of the joint motion disparity estimation. Experimental results demonstrate that Joint Motion and Disparity Estimation can achieve over 1 dB objective quality gain over normal motion estimation. Once combined with Evolutionary strategy, this can achieve up to 94% computational cost saving

    LEVEL-BASED CORRESPONDENCE APPROACH TO COMPUTATIONAL STEREO

    Get PDF
    One fundamental problem in computational stereo reconstruction is correspondence. Correspondence is the method of detecting the real world object reflections in two camera views. This research focuses on correspondence, proposing an algorithm to improve such detection for low quality cameras (webcams) while trying to achieve real-time image processing. Correspondence plays an important role in computational stereo reconstruction and it has a vast spectrum of applicability. This method is useful in other areas such as structure from motion reconstruction, object detection, tracking in robot vision and virtual reality. Due to its importance, a correspondence method needs to be accurate enough to meet the requirement of such fields but it should be less costly and easy to use and configure, to be accessible by everyone. By comparing current local correspondence method and discussing their weakness and strength, this research tries to enhance an algorithm to improve previous works to achieve fast detection, less costly and acceptable accuracy to meet the requirement of reconstruction. In this research, the correspondence is divided into four stages. Two stages of preprocessing which are noise reduction and edge detection have been compared with respect to different methods available. In the next stage, the feature detection process is introduced and discussed focusing on possible solutions to reduce errors created by system or problem occurring in the scene such as occlusion. Lastly, in the final stage it elaborates different methods of displaying reconstructed result. Different sets of data are processed based on the steps involved in correspondence and the results are discussed and compared in detail. The finding shows how this system can achieve high speed and acceptable outcome despite of poor quality input. As a conclusion, some possible improvements are proposed based on ultimate outcome
    • …
    corecore