535 research outputs found

    SLAM research for port AGV based on 2D LIDAR

    Get PDF
    With the increase in international trade, the transshipment of goods at international container ports is very busy. The AGV (Automated Guided Vehicle) has been used as a new generation of automated container horizontal transport equipment. The AGV is an automated unmanned vehicle that can work 24 hours a day, increasing productivity and reducing labor costs compared to using container trucks. The ability to obtain information about the surrounding environment is a prerequisite for the AGV to automatically complete tasks in the port area. At present, the method of AGV based on RFID tag positioning and navigation has a problem of excessive cost. This dissertation has carried out a research on applying light detection and ranging (LIDAR) simultaneous localization and mapping (SLAM) technology to port AGV. In this master's thesis, a mobile test platform based on a laser range finder is developed to scan 360-degree environmental information (distance and angle) centered on the LIDAR and upload the information to a real-time database to generate surrounding environmental maps, and the obstacle avoidance strategy was developed based on the acquired information. The effectiveness of the platform was verified by the experiments from multiple scenarios. Then based on the first platform, another experimental platform with encoder and IMU sensor was developed. In this platform, the functionality of SLAM is enabled by the GMapping algorithm and the installation of the encoder and IMU sensor. Based on the established environment SLAM map, the path planning and obstacle avoidance functions of the platform were realized.Com o aumento do comércio internacional, o transbordo de mercadorias em portos internacionais de contentores é muito movimentado. O AGV (“Automated Guided Vehicle”) foi usado como uma nova geração de equipamentos para transporte horizontal de contentores de forma automatizada. O AGV é um veículo não tripulado automatizado que pode funcionar 24 horas por dia, aumentando a produtividade e reduzindo os custos de mão-de-obra em comparação com o uso de camiões porta-contentores. A capacidade de obter informações sobre o ambiente circundante é um pré-requisito para o AGV concluir automaticamente tarefas na área portuária. Atualmente, o método de AGV baseado no posicionamento e navegação de etiquetas RFID apresenta um problema de custo excessivo. Nesta dissertação foi realizada uma pesquisa sobre a aplicação da tecnologia LIDAR de localização e mapeamento simultâneo (SLAM) num AGV. Uma plataforma de teste móvel baseada num telémetro a laser é desenvolvida para examinar o ambiente em redor em 360 graus (distância e ângulo), centrado no LIDAR, e fazer upload da informação para uma base de dados em tempo real para gerar um mapa do ambiente em redor. Uma estratégia de prevenção de obstáculos foi também desenvolvida com base nas informações adquiridas. A eficácia da plataforma foi verificada através da realização de testes com vários cenários e obstáculos. Por fim, com base na primeira plataforma, uma outra plataforma experimental com codificador e sensor IMU foi também desenvolvida. Nesta plataforma, a funcionalidade do SLAM é ativada pelo algoritmo GMapping e pela instalação do codificador e do sensor IMU. Com base no estabelecimento do ambiente circundante SLAM, foram realizadas as funções de planeamento de trajetória e prevenção de obstáculos pela plataforma

    Wireless sensor network as a distribute database

    Get PDF
    Wireless sensor networks (WSN) have played a role in various fields. In-network data processing is one of the most important and challenging techniques as it affects the key features of WSNs, which are energy consumption, nodes life circles and network performance. In the form of in-network processing, an intermediate node or aggregator will fuse or aggregate sensor data, which are collected from a group of sensors before transferring to the base station. The advantage of this approach is to minimize the amount of information transferred due to lack of computational resources. This thesis introduces the development of a hybrid in-network data processing for WSNs to fulfil the WSNs constraints. An architecture for in-network data processing were proposed in clustering level, data compression level and data mining level. The Neighbour-aware Multipath Cluster Aggregation (NMCA) is designed in the clustering level, which combines cluster-based and multipath approaches to process different packet loss rates. The data compression schemes and Optimal Dynamic Huffman (ODH) algorithm compressed data in the cluster head for the compressed level. A semantic data mining for fire detection was designed for extracting information from the raw data by the semantic data-mining model is developed to improve data accuracy and extract the fire event in the simulation. A demo in-door location system with in-network data processing approach is built to test the performance of the energy reduction of our designed strategy. In conclusion, the added benefits that the technical work can provide for in-network data processing is discussed and specific contributions and future work are highlighted

    Indoor localization utilizing existing infrastructure in smart homes : a thesis by publications presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer and Electronics Engineering, Massey University, Albany, New Zealand

    Get PDF
    Listed in 2019 Dean's List of Exceptional ThesesIndoor positioning system (IPS) have received significant interest from the research community over the past decade. However, this has not eventuated into widespread adoption of IPS and few commercial solutions exist. Integration into Smart Homes could allow for secondary services including location-based services, targeted user experiences and intrusion detection, to be enabled using the existing underlying infrastructure. Since New Zealand has an aging population, we must ensure that the elderly are well looked after. An IPS solution could detect whether a person has been immobile for an extended period and alert medical personnel. A major shortcoming of existing IPS is their reliance on end-users to undertake a significant infrastructure investment to facilitate the localization tasks. An IPS that does not require extensive installation and calibration procedures, could potentially see significant uptake from end users. In order to expedite the widespread adoption of IPS technology, this thesis focuses on four major areas of improvement, namely: infrastructure reuse, reduced node density, algorithm improvement and reduced end user calibration requirements. The work presented demonstrates the feasibility of utilizing existing wireless and lighting infrastructure for positioning and implements novel spring-relaxation and potential fields-based localization approaches that allow for robust target tracking, with minimal calibration requirements. The developed novel localization algorithms are benchmarked against the existing state of the art and show superior performance

    Feature-based calibration of distributed smart stereo camera networks

    Get PDF
    A distributed smart camera network is a collective of vision-capable devices with enough processing power to execute algorithms for collaborative vision tasks. A true 3D sensing network applies to a broad range of applications, and local stereo vision capabilities at each node offer the potential for a particularly robust implementation. A novel spatial calibration method for such a network is presented, which obtains pose estimates suitable for collaborative 3D vision in a distributed fashion using two stages of registration on robust 3D features. The method is first described in a general, modular sense, assuming some ideal vision and registration algorithms. Then, existing algorithms are selected for a practical implementation. The method is designed independently of networking details, making only a few basic assumptions about the underlying network\u27s capabilities. Experiments using both software simulations and physical devices are designed and executed to demonstrate performance

    Parametric Radio Channel Estimation and Robust Localization

    Get PDF
    corecore