45 research outputs found

    Optimization Methods for Image Thresholding: A review

    Get PDF
    Setting a border with the proper gray level in processing images to separate objects from their backgrounds is crucial. One of the simplest and most popular methods of segmenting pictures is histogram-based thresholding. Thresholding is a common technique for image segmentation because of its simplicity. Thresholding is used to separate the Background of the image from the Foreground. There are many methods of thresholding. This paper aims to review many previous studies and mention the types of thresholding. It includes two types: the global and local thresholding methods and each type include a group of methods. The global thresholding method includes (the Otsu method, Kapur's entropy method, Tsallis entropy method, Hysteresis method, and Fuzzy entropy method), and the local thresholding method includes ( Ni-Black method and Bernsen method). The optimization algorithms(Genetic Algorithm, Particle Swarm Optimization, Bat Algorithm, Modified Grasshopper Optimization, Firefly Algorithm, Cuckoo Search, Tabu Search Algorithm, Simulated Annealing, and Jaya Algorithm) used along with thresholding methods are also illustrated

    Multilevel Thresholding for Image Segmentation Using an Improved Electromagnetism Optimization Algorithm

    Get PDF
    Image segmentation is considered one of the most important tasks in image processing, which has several applications in different areas such as; industry agriculture, medicine, etc. In this paper, we develop the electromagnetic optimization (EMO) algorithm based on levy function, EMO-levy, to enhance the EMO performance for determining the optimal multi-level thresholding of image segmentation. In general, EMO simulates the mechanism of attraction and repulsion between charges to develop the individuals of a population. EMO takes random samples from search space within the histogram of image, where, each sample represents each particle in EMO. The quality of each particle is assessed based on Otsu’s or Kapur objective function value. The solutions are updated using EMO operators until determine the optimal objective functions. Finally, this approach produces segmented images with optimal values for the threshold and a few number of iterations. The proposed technique is validated using different standard test images. Experimental results prove the effectiveness and superiority of the proposed algorithm for image segmentation compared with well-known optimization methods

    Cuckoo lévy flight with otsu for image segmentation in cancer detection

    Get PDF
    Detecting cancer cells from computed tomography (CT), magnetic resonance imaging (MRI) or mammogram scan images is a challenging task as the images are black and white and the neighbouring organs tend to be separated by edges with smooth varying intensity. On top of that, medical images segmentation is challenging due to the presence of weakly correlated and ambiguous multiple regions of interest. A few bio-inspired algorithms were developed to efficiently generate optimum threshold values for the process of segmenting such images. Their exhaustive search nature makes them computationally expensive when extended to multilevel thresholding, thus, this research is keen to solve the optimum threshold problems. This research propose an enhancement of image segmentation algorithms based on Otsu’s method by incorporating Cuckoo Search (CS) method for Lévy flight generation while simultaneously modifying and optimizing it to work on CT, MRI or mammogram image scanners, specifically to detect breast cancer. The performance of the proposed Otsu’s method with CS algorithm was compared with other bio-inspired algorithms such as Otsu with Particle Swarm Optimization (PSO) and Otsu with Darwinian Particle Swarm Optimization (DPSO). The experimental results were validated by measuring the peak signal-to-noise ratio (PNSR), mean squared error (MSE), feature similarity index (FSIM) and CPU running time for all cases investigated. The proposed Otsu’s method with CS algorithm experimental results achieved an average of 231.52 of MSE, 24.60 of PNSR, 0.93 of FSIM and 3.36 second of CPU running time. The method evolved to be more promising and computationally efficient for segmenting medical images. It is expected that the experiment results will benefit those in the areas of computer vision, remote sensing and image processing application

    A Multilevel Image Thresholding Based on Hybrid Jaya Algorithm and Simulated Annealing

    Get PDF
    Thresholding is a method for region-based image segmentation, which is important in image processing applications such as object recognition Multilevel. Thresholding is used to find multiple threshold values. Image segmentation plays a significant role in image analysis and pattern recognition. While threshold techniques traditionally are quite well for bi-level thresholding algorithms, multilevel thresholding for color images may have too much processing complexity. Swarm intelligence methods are frequently employed to minimize the complexity of constrained optimization problems applicable to multilevel thresholding and segmentation of color (RGB) images; In this paper, the hybrid Jaya algorithm with the SA algorithm was proposed to solve the problem of computational complexity in multilevel thresholding. This work uses Otsu method, Kapur entropy and Tsallis method as techniques to find optimal values of thresholds at different levels of color images as the target Tasks Experiments were performed on 5 standardized color images and 3 grayscale images as far as optimal threshold values are concerned, Statistical methods were used to measure the performance of the threshold methods and to select the better threshold, namely, PSNR (Peak Signal to Noise Ratio), MSE (Mean Square Error), SSIM (Structural Similarity Index), FSIM (Feature Similarity Index) and values of objective at many levels. The experimental results indicate that the presenter's Jaya and Simulated Annealing (JSA) method is better than other methods for segmenting color (RGB) images with multiple threshold levels. On the other hand, the Tsallis entropy of the cascade was found to be more robust and accurate in segmenting color images at multiple levels

    Remote sensing imagery segmentation: A hybrid approach

    Full text link
    In remote sensing imagery, segmentation techniques fail to encounter multiple regions of interest due to challenges such as dense features, low illumination, uncertainties, and noise. Consequently, exploiting vast and redundant information makes segmentation a difficult task. Existing multilevel thresholding techniques achieve low segmentation accuracy with high temporal difficulty due to the absence of spatial information. To mitigate this issue, this paper presents a new Rényi’s entropy and modified cuckoo search-based robust automatic multi-thresholding algorithm for remote sensing image analysis. In the proposed method, the modified cuckoo search algorithm is combined with Rényi’s entropy thresholding criteria to determine optimal thresholds. In the modified cuckoo search algorithm, the Lévy flight step size was modified to improve the convergence rate. An experimental analysis was conducted to validate the proposed method, both qualitatively and quantitatively against existing metaheuristic-based thresholding methods. To do this, the performance of the proposed method was intensively examined on high-dimensional remote sensing imageries. Moreover, numerical parameter analysis is presented to compare the segmented results against the gray-level co-occurrence matrix, Otsu energy curve, minimum cross entropy, and Rényi’s entropy-based thresholding. Experiments demonstrated that the proposed approach is effective and successful in attaining accurate segmentation with low time complexity

    A Study on RGB Image Multi-Thresholding using Kapur/Tsallis Entropy and Moth-Flame Algorithm

    Get PDF
    In the literature, a considerable number of image processing and evaluation procedures are proposed and implemented in various domains due to their practical importance. Thresholding is one of the pre-processing techniques, widely implemented to enhance the information in a class of gray/RGB class pictures. The thresholding helps to enhance the image by grouping the similar pixels based on the chosen thresholds. In this research, an entropy assisted threshold is implemented for the benchmark RGB images. The aim of this work is to examine the thresholding performance of well-known entropy functions, such as Kapur’s and Tsallis for a chosen image threshold. This work employs a Moth-Flame-Optimization (MFO) algorithm to support the automatic identification of the finest threshold (Th) on the benchmark RGB image for a chosen threshold value (Th=2,3,4,5). After getting the threshold image, a comparison is performed against its original picture and the necessary Picture-Quality-Values (PQV) is computed to confirm the merit of the proposed work. The experimental investigation is demonstrated using benchmark images with various dimensions and the outcome of this study confirms that the MFO helps to get a satisfactory result compared to the other heuristic algorithms considered in this study

    HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images

    Get PDF
    Recently, a novel virus called COVID-19 has pervasive worldwide, starting from China and moving to all the world to eliminate a lot of persons. Many attempts have been experimented to identify the infection with COVID-19. The X-ray images were one of the attempts to detect the influence of COVID-19 on the infected persons from involving those experiments. According to the X-ray analysis, bilateral pulmonary parenchymal ground-glass and consolidative pulmonary opacities can be caused by COVID-19 — sometimes with a rounded morphology and a peripheral lung distribution. But unfortunately, the specification or if the person infected with COVID-19 or not is so hard under the X-ray images. X-ray images could be classified using the machine learning techniques to specify if the person infected severely, mild, or not infected. To improve the classification accuracy of the machine learning, the region of interest within the image that contains the features of COVID-19 must be extracted. This problem is called the image segmentation problem (ISP). Many techniques have been proposed to overcome ISP. The most commonly used technique due to its simplicity, speed, and accuracy are threshold-based segmentation. This paper proposes a new hybrid approach based on the thresholding technique to overcome ISP for COVID-19 chest X-ray images by integrating a novel meta-heuristic algorithm known as a slime mold algorithm (SMA) with the whale optimization algorithm to maximize the Kapur's entropy. The performance of integrated SMA has been evaluated on 12 chest X-ray images with threshold levels up to 30 and compared with five algorithms: Lshade algorithm, whale optimization algorithm (WOA), FireFly algorithm (FFA), Harris-hawks algorithm (HHA), salp swarm algorithms (SSA), and the standard SMA. The experimental results demonstrate that the proposed algorithm outperforms SMA under Kapur's entropy for all the metrics used and the standard SMA could perform better than the other algorithms in the comparison under all the metrics

    Tissue segmentation using medical image processing chain optimization

    Get PDF
    Surveyed literature shows many segmentation algorithms using different types of optimization methods. These methods were used to minimize or maximize objective functions of entropy, similarity, clustering, contour, or thresholding. These specially developed functions target specific feature or step in the presented segmentation algorithms. To the best of our knowledge, this thesis is the first research work that uses an optimizer to build and optimize parameters of a full sequence of image processing chain. This thesis presents a universal algorithm that uses three images and their corresponding gold images to train the framework. The optimization algorithm explores the search space for the best sequence of the image processing chain to segment the targeted feature. Experiments indicate that using differential evolution to build Image processing chain (IPC) out of forty-five algorithms increases the segmentation performance of basic thresholding algorithms ranging from 2% to 78%
    corecore