157 research outputs found

    A Conservative Scheme with Optimal Error Estimates for a Multidimensional Space-Fractional Gross-Pitaevskii Equation

    Get PDF
    The present work departs from an extended form of the classical multi-dimensional Gross-Pitaevskii equation, which considers fractional derivatives of the Riesz type in space, a generalized potential function and angular momentum rotation. It is well known that the classical system possesses functionals which are preserved throughout time. It is easy to check that the generalized fractional model considered in this work also possesses conserved quantities, whence the development of conservative and efficient numerical schemes is pragmatically justified. Motivated by these facts, we propose a finite-difference method based on weighted-shifted Grünwald differences to approximate the solutions of the generalized Gross-Pitaevskii system. We provide here a discrete extension of the uniform Sobolev inequality to multiple dimensions, and show that the proposed method is capable of preserving discrete forms of the mass and the energy of the model. Moreover, we establish thoroughly the stability and the convergence of the technique, and provide some illustrative simulations to show that the method is capable of preserving the total mass and the total energy of the generalized system. © 2019 Ahmed S. Hendy et al., published by Sciendo 2019

    Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients

    Get PDF
    open access articleMotivated by the limited work performed on the development of computational techniques for solving the nonlinear Schrödinger equation with time-dependent coefficients, we develop a modified Runge-Kutta pair with improved periodicity and stability characteristics. Additionally, we develop a modified step size control algorithm, which increases the efficiency of our pair and all other pairs included in the numerical experiments. The numerical results on the nonlinear Schrödinger equation with periodic solution verified the superiority of the new algorithm in terms of efficiency. The new method also presents a good behaviour of the maximum absolute error and the global norm in time, even after a high number of oscillations

    Uniformly Accurate Methods for Klein-Gordon type Equations

    Get PDF
    The main contribution of this thesis is the development of a novel class of uniformly accurate methods for Klein-Gordon type equations. Klein-Gordon type equations in the non-relativistic limit regime, i.e., c1c\gg 1, are numerically very challenging to treat, since the solutions are highly oscillatory in time. Standard Gautschi-type methods suffer from severe time step restrictions as they require a CFL-condition c2τ<1c^2\tau<1 with time step size τ\tau to resolve the oscillations. Within this thesis we overcome this difficulty by introducing limit integrators, which allows us to reduce the highly oscillatory problem to the integration of a non-oscillatory limit system. This procedure allows error bounds of order O(c2+τ2)\mathcal{O}(c^{-2}+\tau^2) without any step size restrictions. Thus, these integrators are very efficient in the regime c1c\gg 1. However, limit integrators fail for small values of cc. In order to derive numerical schemes that work well for small as well as for large cc, we use the ansatz of "twisted variables", which allows us to develop uniformly accurate methods with respect to cc. In particular, we introduce efficient and robust uniformly accurate exponential-type integrators which resolve the solution in the relativistic regime as well as in the highly oscillatory non-relativistic regime without any step size restriction. In contrast to previous works, we do not employ any asymptotic nor multiscale expansion of the solution. Compared to classical methods our new schemes allow us to reduce the regularity assumptions as they converge under the same regularity assumptions required for the integration of the corresponding limit system. In addition, the newly derived first- and second-order exponential-type integrators converge to the classical Lie and Strang splitting schemes for the limit system. Moreover, we present uniformly accurate schemes for the Klein-Gordon-Schrödinger and the Klein-Gordon-Zakharov system. For all uniformly accurate integrators we establish rigorous error estimates and underline their uniform convergence property numerically

    Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients

    Get PDF
    Motivated by the limited work performed on the development of computational techniques for solving the nonlinear Schrödinger equation with time-dependent coefficients, we develop a modified Runge–Kutta pair with improved periodicity and stability characteristics. Additionally, we develop a modified step size control algorithm, which increases the efficiency of our pair and all other pairs included in the numerical experiments. The numerical results on the nonlinear Schrödinger equation with a periodic solution verified the superiority of the new algorithm in terms of efficiency. The new method also presents a good behaviour of the maximum absolute error and the global norm in time, even after a high number of oscillations

    Hadron models and related New Energy issues

    Get PDF
    The present book covers a wide-range of issues from alternative hadron models to their likely implications in New Energy research, including alternative interpretation of lowenergy reaction (coldfusion) phenomena. The authors explored some new approaches to describe novel phenomena in particle physics. M Pitkanen introduces his nuclear string hypothesis derived from his Topological Geometrodynamics theory, while E. Goldfain discusses a number of nonlinear dynamics methods, including bifurcation, pattern formation (complex GinzburgLandau equation) to describe elementary particle masses. Fu Yuhua discusses a plausible method for prediction of phenomena related to New Energy development. F. Smarandache discusses his unmatter hypothesis, and A. Yefremov et al. discuss Yang-Mills field from Quaternion Space Geometry. Diego Rapoport discusses theoretical link between Torsion fields and Hadronic Mechanic. A.H. Phillips discusses semiconductor nanodevices, while V. and A. Boju discuss Digital Discrete and Combinatorial methods and their likely implications in New Energy research. Pavel Pintr et al. describe planetary orbit distance from modified Schrödinger equation, and M. Pereira discusses his new Hypergeometrical description of Standard Model of elementary particles. The present volume will be suitable for researchers interested in New Energy issues, in particular their link with alternative hadron models and interpretation

    Symmetries in Quantum Mechanics and Statistical Physics

    Get PDF
    This book collects contributions to the Special Issue entitled "Symmetries in Quantum Mechanics and Statistical Physics" of the journal Symmetry. These contributions focus on recent advancements in the study of PT–invariance of non-Hermitian Hamiltonians, the supersymmetric quantum mechanics of relativistic and non-relativisitc systems, duality transformations for power–law potentials and conformal transformations. New aspects on the spreading of wave packets are also discussed
    corecore