1,223 research outputs found

    Modeling techniques for quantum cascade lasers

    Full text link
    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schr\"odinger equation and Schr\"odinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function (NEGF) formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures

    Apollo guidance, navigation, and control: Candidate configuration trade study, Stellar-Inertial Measurement System (SIMS) for an Earth Observation Satellite (EOS)

    Get PDF
    The ten candidate SIMS configurations were reduced to three in preparation for the final trade comparison. The report emphasizes subsystem design trades, star availability studies, data processing (smoothing) methods, and the analytical and simulation studies at subsystem and system levels from which candidate accuracy estimates will be presented

    Lossy compression and real-time geovisualization for ultra-low bandwidth telemetry from untethered underwater vehicles

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2008Oceanographic applications of robotics are as varied as the undersea environment itself. As underwater robotics moves toward the study of dynamic processes with multiple vehicles, there is an increasing need to distill large volumes of data from underwater vehicles and deliver it quickly to human operators. While tethered robots are able to communicate data to surface observers instantly, communicating discoveries is more difficult for untethered vehicles. The ocean imposes severe limitations on wireless communications; light is quickly absorbed by seawater, and tradeoffs between frequency, bitrate and environmental effects result in data rates for acoustic modems that are routinely as low as tens of bits per second. These data rates usually limit telemetry to state and health information, to the exclusion of mission-specific science data. In this thesis, I present a system designed for communicating and presenting science telemetry from untethered underwater vehicles to surface observers. The system's goals are threefold: to aid human operators in understanding oceanographic processes, to enable human operators to play a role in adaptively responding to mission-specific data, and to accelerate mission planning from one vehicle dive to the next. The system uses standard lossy compression techniques to lower required data rates to those supported by commercially available acoustic modems (O(10)-O(100) bits per second). As part of the system, a method for compressing time-series science data based upon the Discrete Wavelet Transform (DWT) is explained, a number of low-bitrate image compression techniques are compared, and a novel user interface for reviewing transmitted telemetry is presented. Each component is motivated by science data from a variety of actual Autonomous Underwater Vehicle (AUV) missions performed in the last year.National Science Foundation Center for Subsurface Sensing and Imaging (CenSSIS ERC
    • …
    corecore