707 research outputs found

    An algebraic approach to Integer Portfolio problems

    Get PDF
    Integer variables allow the treatment of some portfolio optimization problems in a more realistic way and introduce the possibility of adding some natural features to the model. We propose an algebraic approach to maximize the expected return under a given admissible level of risk measured by the covariance matrix. To reach an optimal portfolio it is an essential ingredient the computation of different test sets (via Gr\"obner basis) of linear subproblems that are used in a dual search strategy.Universidad de Sevilla P06-FQM-01366Junta de Andalucía (Plan Andaluz de Investigación) FQM-333Ministerio de Ciencia e Innovación (España) MTM2007-64509Instituto de Matemáticas de la Universidad de Sevilla MTM2007-67433-C02-0

    Sticky Brownian Rounding and its Applications to Constraint Satisfaction Problems

    Get PDF
    Semidefinite programming is a powerful tool in the design and analysis of approximation algorithms for combinatorial optimization problems. In particular, the random hyperplane rounding method of Goemans and Williamson has been extensively studied for more than two decades, resulting in various extensions to the original technique and beautiful algorithms for a wide range of applications. Despite the fact that this approach yields tight approximation guarantees for some problems, e.g., Max-Cut, for many others, e.g., Max-SAT and Max-DiCut, the tight approximation ratio is still unknown. One of the main reasons for this is the fact that very few techniques for rounding semidefinite relaxations are known. In this work, we present a new general and simple method for rounding semi-definite programs, based on Brownian motion. Our approach is inspired by recent results in algorithmic discrepancy theory. We develop and present tools for analyzing our new rounding algorithms, utilizing mathematical machinery from the theory of Brownian motion, complex analysis, and partial differential equations. Focusing on constraint satisfaction problems, we apply our method to several classical problems, including Max-Cut, Max-2SAT, and MaxDiCut, and derive new algorithms that are competitive with the best known results. To illustrate the versatility and general applicability of our approach, we give new approximation algorithms for the Max-Cut problem with side constraints that crucially utilizes measure concentration results for the Sticky Brownian Motion, a feature missing from hyperplane rounding and its generalization

    An outer approximation bi-level framework for mixed categorical structural optimization problems

    Full text link
    In this paper, mixed categorical structural optimization problems are investigated. The aim is to minimize the weight of a truss structure with respect to cross-section areas, materials and cross-section type. The proposed methodology consists of using a bi-level decomposition involving two problems: master and slave. The master problem is formulated as a mixed integer linear problem where the linear constraints are incrementally augmented using outer approximations of the slave problem solution. The slave problem addresses the continuous variables of the optimization problem. The proposed methodology is tested on three different structural optimization test cases with increasing complexity. The comparison to state-of-the-art algorithms emphasizes the efficiency of the proposed methodology in terms of the optimum quality, computation cost, as well as its scalability with respect to the problem dimension. A challenging 120-bar dome truss optimization problem with 90 categorical choices per bar is also tested. The obtained results showed that our method is able to solve efficiently large scale mixed categorical structural optimization problems.Comment: Accepted for publication in Structural and Multidisciplinary Optimization, to appear 202

    Efficient Semidefinite Branch-and-Cut for MAP-MRF Inference

    Full text link
    We propose a Branch-and-Cut (B&C) method for solving general MAP-MRF inference problems. The core of our method is a very efficient bounding procedure, which combines scalable semidefinite programming (SDP) and a cutting-plane method for seeking violated constraints. In order to further speed up the computation, several strategies have been exploited, including model reduction, warm start and removal of inactive constraints. We analyze the performance of the proposed method under different settings, and demonstrate that our method either outperforms or performs on par with state-of-the-art approaches. Especially when the connectivities are dense or when the relative magnitudes of the unary costs are low, we achieve the best reported results. Experiments show that the proposed algorithm achieves better approximation than the state-of-the-art methods within a variety of time budgets on challenging non-submodular MAP-MRF inference problems.Comment: 21 page

    A Parallel Branch and Bound Algorithm for Integer Linear Programming Models

    Get PDF
    A parallel branch and bound algorithm is developed for use with MIMD computers to study the efficiency of parallel processors on general integer linear programming problems. The Haldi and IBM test problems and a System Design model are used in the implementation of the algorithm. Initially the algorithm solves the Haldi and IBM test problems on a single processor computer which simulates a multiple processor computer. The algorithm is then implemented on the Denelcor HEP multiprocessor using two of the IBM problems to compare the results of the simulation to the results using an MIMD computer. Finally the algorithm is implemented on the HEP using the System Design model to show a case in which the number of pivots decreases as the number of processes are increased from seven to the process limit of sixteen. In general, it is shown that super linear efficiency can be achieved using multiple processors

    On the integration of Dantzig-Wolfe and Fenchel decompositions via directional normalizations

    Full text link
    The strengthening of linear relaxations and bounds of mixed integer linear programs has been an active research topic for decades. Enumeration-based methods for integer programming like linear programming-based branch-and-bound exploit strong dual bounds to fathom unpromising regions of the feasible space. In this paper, we consider the strengthening of linear programs via a composite of Dantzig-Wolfe and Fenchel decompositions. We provide geometric interpretations of these two classical methods. Motivated by these geometric interpretations, we introduce a novel approach for solving Fenchel sub-problems and introduce a novel decomposition combining Dantzig-Wolfe and Fenchel decompositions in an original manner. We carry out an extensive computational campaign assessing the performance of the novel decomposition on the unsplittable flow problem. Very promising results are obtained when the new approach is compared to classical decomposition methods
    corecore