3,488 research outputs found

    Fuzzy Content Mining for Targeted Advertisement

    Get PDF
    Content-targeted advertising system is becoming an increasingly important part of the funding source of free web services. Highly efficient content analysis is the pivotal key of such a system. This project aims to establish a content analysis engine involving fuzzy logic that is able to automatically analyze real user-posted Web documents such as blog entries. Based on the analysis result, the system matches and retrieves the most appropriate Web advertisements. The focus and complexity is on how to better estimate and acquire the keywords that represent a given Web document. Fuzzy Web mining concept will be applied to synthetically consider multiple factors of Web content. A Fuzzy Ranking System is established based on certain fuzzy (and some crisp) rules, fuzzy sets, and membership functions to get the best candidate keywords. Once it is has obtained the keywords, the system will retrieve corresponding advertisements from certain providers through Web services as matched advertisements, similarly to retrieving a products list from Amazon.com. In 87% of the cases, the results of this system can match the accuracy of the Google Adwords system. Furthermore, this expandable system will also be a solid base for further research and development on this topic

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Context-Specific Preference Learning of One Dimensional Quantitative Geospatial Attributes Using a Neuro-Fuzzy Approach

    Get PDF
    Change detection is a topic of great importance for modern geospatial information systems. Digital aerial imagery provides an excellent medium to capture geospatial information. Rapidly evolving environments, and the availability of increasing amounts of diverse, multiresolutional imagery bring forward the need for frequent updates of these datasets. Analysis and query of spatial data using potentially outdated data may yield results that are sometimes invalid. Due to measurement errors (systematic, random) and incomplete knowledge of information (uncertainty) it is ambiguous if a change in a spatial dataset has really occurred. Therefore we need to develop reliable, fast, and automated procedures that will effectively report, based on information from a new image, if a change has actually occurred or this change is simply the result of uncertainty. This thesis introduces a novel methodology for change detection in spatial objects using aerial digital imagery. The uncertainty of the extraction is used as a quality estimate in order to determine whether change has occurred. For this goal, we develop a fuzzy-logic system to estimate uncertainty values fiom the results of automated object extraction using active contour models (a.k.a. snakes). The differential snakes change detection algorithm is an extension of traditional snakes that incorporates previous information (i.e., shape of object and uncertainty of extraction) as energy functionals. This process is followed by a procedure in which we examine the improvement of the uncertainty at the absence of change (versioning). Also, we introduce a post-extraction method for improving the object extraction accuracy. In addition to linear objects, in this thesis we extend differential snakes to track deformations of areal objects (e.g., lake flooding, oil spills). From the polygonal description of a spatial object we can track its trajectory and areal changes. Differential snakes can also be used as the basis for similarity indices for areal objects. These indices are based on areal moments that are invariant under general affine transformation. Experimental results of the differential snakes change detection algorithm demonstrate their performance. More specifically, we show that the differential snakes minimize the false positives in change detection and track reliably object deformations

    New Ideas for Brain Modelling

    Full text link
    This paper describes some biologically-inspired processes that could be used to build the sort of networks that we associate with the human brain. New to this paper, a 'refined' neuron will be proposed. This is a group of neurons that by joining together can produce a more analogue system, but with the same level of control and reliability that a binary neuron would have. With this new structure, it will be possible to think of an essentially binary system in terms of a more variable set of values. The paper also shows how recent research associated with the new model, can be combined with established theories, to produce a more complete picture. The propositions are largely in line with conventional thinking, but possibly with one or two more radical suggestions. An earlier cognitive model can be filled in with more specific details, based on the new research results, where the components appear to fit together almost seamlessly. The intention of the research has been to describe plausible 'mechanical' processes that can produce the appropriate brain structures and mechanisms, but that could be used without the magical 'intelligence' part that is still not fully understood. There are also some important updates from an earlier version of this paper
    corecore