31,530 research outputs found

    An efficient approximation to the K-means clustering for Massive Data

    Get PDF
    Due to the progressive growth of the amount of data available in a wide variety of scientific fields, it has become more difficult to manipulate and analyze such information. In spite of its dependency on the initial settings and the large number of distance computations that it can require to converge, the K-means algorithm remains as one of the most popular clustering methods for massive datasets. In this work, we propose an efficient approximation to the K-means problem intended for massive data. Our approach recursively partitions the entire dataset into a small number of subsets, each of which is characterized by its representative (center of mass) and weight (cardinality), afterwards a weighted version of the K-means algorithm is applied over such local representation, which can drastically reduce the number of distances computed. In addition to some theoretical properties, experimental results indicate that our method outperforms well-known approaches, such as the K-means++ and the minibatch K-means, in terms of the relation between number of distance computations and the quality of the approximation.MINECO (TIN2013-41272P), Spanish Ministry of Economy and Competitivenes

    Quantized Compressive K-Means

    Full text link
    The recent framework of compressive statistical learning aims at designing tractable learning algorithms that use only a heavily compressed representation-or sketch-of massive datasets. Compressive K-Means (CKM) is such a method: it estimates the centroids of data clusters from pooled, non-linear, random signatures of the learning examples. While this approach significantly reduces computational time on very large datasets, its digital implementation wastes acquisition resources because the learning examples are compressed only after the sensing stage. The present work generalizes the sketching procedure initially defined in Compressive K-Means to a large class of periodic nonlinearities including hardware-friendly implementations that compressively acquire entire datasets. This idea is exemplified in a Quantized Compressive K-Means procedure, a variant of CKM that leverages 1-bit universal quantization (i.e. retaining the least significant bit of a standard uniform quantizer) as the periodic sketch nonlinearity. Trading for this resource-efficient signature (standard in most acquisition schemes) has almost no impact on the clustering performances, as illustrated by numerical experiments

    Computing Vertex Centrality Measures in Massive Real Networks with a Neural Learning Model

    Full text link
    Vertex centrality measures are a multi-purpose analysis tool, commonly used in many application environments to retrieve information and unveil knowledge from the graphs and network structural properties. However, the algorithms of such metrics are expensive in terms of computational resources when running real-time applications or massive real world networks. Thus, approximation techniques have been developed and used to compute the measures in such scenarios. In this paper, we demonstrate and analyze the use of neural network learning algorithms to tackle such task and compare their performance in terms of solution quality and computation time with other techniques from the literature. Our work offers several contributions. We highlight both the pros and cons of approximating centralities though neural learning. By empirical means and statistics, we then show that the regression model generated with a feedforward neural networks trained by the Levenberg-Marquardt algorithm is not only the best option considering computational resources, but also achieves the best solution quality for relevant applications and large-scale networks. Keywords: Vertex Centrality Measures, Neural Networks, Complex Network Models, Machine Learning, Regression ModelComment: 8 pages, 5 tables, 2 figures, version accepted at IJCNN 2018. arXiv admin note: text overlap with arXiv:1810.1176
    • …
    corecore