3,098 research outputs found

    Improved Approximation Algorithms for Computing k Disjoint Paths Subject to Two Constraints

    Full text link
    For a given graph GG with positive integral cost and delay on edges, distinct vertices ss and tt, cost bound C∈Z+C\in Z^{+} and delay bound D∈Z+D\in Z^{+}, the kk bi-constraint path (kkBCP) problem is to compute kk disjoint stst-paths subject to CC and DD. This problem is known NP-hard, even when k=1k=1 \cite{garey1979computers}. This paper first gives a simple approximation algorithm with factor-(2,2)(2,2), i.e. the algorithm computes a solution with delay and cost bounded by 2∗D2*D and 2∗C2*C respectively. Later, a novel improved approximation algorithm with ratio (1+ÎČ, max⁥{2, 1+ln⁥1ÎČ})(1+\beta,\,\max\{2,\,1+\ln\frac{1}{\beta}\}) is developed by constructing interesting auxiliary graphs and employing the cycle cancellation method. As a consequence, we can obtain a factor-(1.369, 2)(1.369,\,2) approximation algorithm by setting 1+ln⁥1ÎČ=21+\ln\frac{1}{\beta}=2 and a factor-(1.567, 1.567)(1.567,\,1.567) algorithm by setting 1+ÎČ=1+ln⁥1ÎČ1+\beta=1+\ln\frac{1}{\beta}. Besides, by setting ÎČ=0\beta=0, an approximation algorithm with ratio (1, O(ln⁥n))(1,\, O(\ln n)), i.e. an algorithm with only a single factor ratio O(ln⁥n)O(\ln n) on cost, can be immediately obtained. To the best of our knowledge, this is the first non-trivial approximation algorithm for the kkBCP problem that strictly obeys the delay constraint.Comment: 12 page

    NeuRoute: Predictive Dynamic Routing for Software-Defined Networks

    Full text link
    This paper introduces NeuRoute, a dynamic routing framework for Software Defined Networks (SDN) entirely based on machine learning, specifically, Neural Networks. Current SDN/OpenFlow controllers use a default routing based on Dijkstra algorithm for shortest paths, and provide APIs to develop custom routing applications. NeuRoute is a controller-agnostic dynamic routing framework that (i) predicts traffic matrix in real time, (ii) uses a neural network to learn traffic characteristics and (iii) generates forwarding rules accordingly to optimize the network throughput. NeuRoute achieves the same results as the most efficient dynamic routing heuristic but in much less execution time.Comment: Accepted for CNSM 201

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Reliable Energy-Efficient Routing Algorithm for Vehicle-Assisted Wireless Ad-Hoc Networks

    Full text link
    We investigate the design of the optimal routing path in a moving vehicles involved the internet of things (IoT). In our model, jammers exist that may interfere with the information exchange between wireless nodes, leading to worsened quality of service (QoS) in communications. In addition, the transmit power of each battery-equipped node is constrained to save energy. We propose a three-step optimal routing path algorithm for reliable and energy-efficient communications. Moreover, results show that with the assistance of moving vehicles, the total energy consumed can be reduced to a large extend. We also study the impact on the optimal routing path design and energy consumption which is caused by path loss, maximum transmit power constrain, QoS requirement, etc.Comment: 6 pages, 5 figures, rejected by IEEE Globecom 2017,resubmit to IEEE WCNC 201

    Constrained shortest paths for QoS routing and path protection in communication networks.

    Get PDF
    The CSDP (k) problem requires the selection of a set of k > 1 link-disjoint paths with minimum total cost and with total delay bounded by a given upper bound. This problem arises in the context of provisioning paths in a network that could be used to provide resilience to link failures. Again we studied the LP relaxation of the ILP formulation of the problem from the primal perspective and proposed an approximation algorithm.We have studied certain combinatorial optimization problems that arise in the context of two important problems in computer communication networks: end-to-end Quality of Service (QoS) and fault tolerance. These problems can be modeled as constrained shortest path(s) selection problems on networks with each of their links associated with additive weights representing the cost, delay etc.The problems considered above assume that the network status is known and accurate. However, in real networks, this assumption is not realistic. So we considered the QoS route selection problem under inaccurate state information. Here the goal is to find a path with the highest probability that satisfies a given delay upper bound. We proposed a pseudo-polynomial time approximation algorithm, a fully polynomial time approximation scheme, and a strongly polynomial time heuristic for this problem.Finally we studied the constrained shortest path problem with multiple additive constraints. Using the LARAC algorithm as a building block and combining ideas from mathematical programming, we proposed a new approximation algorithm.First we studied the QoS single route selection problem, i.e., the constrained shortest path (CSP) problem. The goal of the CSP problem is to identify a minimum cost route which incurs a delay less than a specified bound. It can be formulated as an integer linear programming (ILP) problem which is computationally intractable. The LARAC algorithm reported in the literature is based on the dual of the linear programming relaxation of the ILP formulation and gives an approximate solution. We proposed two new approximation algorithms solving the dual problem. Next, we studied the CSP problem using the primal simplex method and exploiting certain structural properties of networks. This led to a novel approximation algorithm

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    Algorithms for Computing QoS Paths With Restoration

    Get PDF
    There is a growing interest among service providers to offer new services with Quality of Service (QoS) guarantees that are also resilient to failures. Supporting QoS connections requires the existence of a routing mechanism, that computes the QoS paths, i.e., paths that satisfy QoS constraints (e.g., delay or bandwidth). Resilience to failures, on the other hand, is achieved by providing, for each primary QoS path, a set of alternative QoS paths used upon a failure of either a link or a node. The above objectives, coupled with the need to minimize the global use of network resources, imply that the cost of both the primary path and the restoration topology should be a major consideration of the routing process. We undertake a comprehensive study of problems related to finding suitable restoration topologies for QoS paths. We consider both bottleneck QoS constraints, such as bandwidth, and additive QoS constraints, such as delay and jitter. This is the first study to provide a rigorous solution, with proven guarantees, to the combined problem of computing QoS paths with restoration. It turns out that the widely used approach of disjoint primary and restoration paths is not an optimal strategy. Hence, the proposed algorithms construct a restoration topology, i.e., a set of bridges, each bridge protecting a portion of the primary QoS path. This approach guarantees to find a restoration topology with low cost when one exists
    • 

    corecore