205,460 research outputs found

    An Efficient and Self-Adapted Approach to the Sharpening of Color Images

    Get PDF
    An efficient approach to the sharpening of color images is proposed in this paper. For this, the image to be sharpened is first transformed to the HSV color model, and then only the channel of Value will be used for the process of sharpening while the other channels are left unchanged. We then apply a proposed edge detector and low-pass filter to the channel of Value to pick out pixels around boundaries. After that, those pixels detected as around edges or boundaries are adjusted so that the boundary can be sharpened, and those nonedge pixels are kept unaltered. The increment or decrement magnitude that is to be added to those edge pixels is determined in an adaptive manner based on global statistics of the image and local statistics of the pixel to be sharpened. With the proposed approach, the discontinuities can be highlighted while most of the original information contained in the image can be retained. Finally, the adjusted channel of Value and that of Hue and Saturation will be integrated to get the sharpened color image. Extensive experiments on natural images will be given in this paper to highlight the effectiveness and efficiency of the proposed approach

    Unsupervised smooth contour detection

    Get PDF
    An unsupervised method for detecting smooth contours in digital images is proposed. Following the a contrario approach, the starting point is dening the conditions where contours should not be detected: soft gradient regions contaminated by noise. To achieve this, low frequencies are removed from the input image. Then, contours are validated as the frontiers separating two adjacent regions, one with signicantly larger values than the other. Signicance is evalu-ted using the Mann-Whitney U test to determine whether the samples were drawn from the same distribution or not. This test makes no assumption on the distributions. The resulting algorithm is similar to the classic Marr-Hildreth edge detector, with the addition of the statistical validation step. Combined with heuristics based on the Canny and Devernay methods, an efficient algorithm is derived producing sub-pixel contours

    Using the discrete hadamard transform to detect moving objects in surveillance video

    Get PDF
    In this paper we present an approach to object detection in surveillance video based on detecting moving edges using the Hadamard transform. The proposed method is characterized by robustness to illumination changes and ghosting effects and provides high speed detection, making it particularly suitable for surveillance applications. In addition to presenting an approach to moving edge detection using the Hadamard transform, we introduce two measures to track edge history, Pixel Bit Mask Difference (PBMD) and History Update Value (H UV ) that help reduce the false detections commonly experienced by approaches based on moving edges. Experimental results show that the proposed algorithm overcomes the traditional drawbacks of frame differencing and outperforms existing edge-based approaches in terms of both detection results and computational complexity

    Connectivity-Enforcing Hough Transform for the Robust Extraction of Line Segments

    Full text link
    Global voting schemes based on the Hough transform (HT) have been widely used to robustly detect lines in images. However, since the votes do not take line connectivity into account, these methods do not deal well with cluttered images. In opposition, the so-called local methods enforce connectivity but lack robustness to deal with challenging situations that occur in many realistic scenarios, e.g., when line segments cross or when long segments are corrupted. In this paper, we address the critical limitations of the HT as a line segment extractor by incorporating connectivity in the voting process. This is done by only accounting for the contributions of edge points lying in increasingly larger neighborhoods and whose position and directional content agree with potential line segments. As a result, our method, which we call STRAIGHT (Segment exTRAction by connectivity-enforcInG HT), extracts the longest connected segments in each location of the image, thus also integrating into the HT voting process the usually separate step of individual segment extraction. The usage of the Hough space mapping and a corresponding hierarchical implementation make our approach computationally feasible. We present experiments that illustrate, with synthetic and real images, how STRAIGHT succeeds in extracting complete segments in several situations where current methods fail.Comment: Submitted for publicatio

    Vanishing point detection for road detection

    Get PDF
    International audienceGiven a single image of an arbitrary road, that may not be well-paved, or have clearly delineated edges, or some a priori known color or texture distribution, is it possible for a computer to find this road? This paper addresses this question by decomposing the road detection process into two steps: the estimation of the vanishing point associated with the main (straight) part of the road, followed by the segmentation of the corresponding road area based on the detected vanishing point. The main technical contributions of the proposed approach are a novel adaptive soft voting scheme based on variable-sized voting region using confidence-weighted Gabor filters, which compute the dominant texture orientation at each pixel, and a new vanishing-point-constrained edge detection technique for detecting road boundaries. The proposed method has been implemented, and experiments with 1003 general road images demonstrate that it is both computationally efficient and effective at detecting road regions in challenging conditions

    A new Edge Detector Based on Parametric Surface Model: Regression Surface Descriptor

    Full text link
    In this paper we present a new methodology for edge detection in digital images. The first originality of the proposed method is to consider image content as a parametric surface. Then, an original parametric local model of this surface representing image content is proposed. The few parameters involved in the proposed model are shown to be very sensitive to discontinuities in surface which correspond to edges in image content. This naturally leads to the design of an efficient edge detector. Moreover, a thorough analysis of the proposed model also allows us to explain how these parameters can be used to obtain edge descriptors such as orientations and curvatures. In practice, the proposed methodology offers two main advantages. First, it has high customization possibilities in order to be adjusted to a wide range of different problems, from coarse to fine scale edge detection. Second, it is very robust to blurring process and additive noise. Numerical results are presented to emphasis these properties and to confirm efficiency of the proposed method through a comparative study with other edge detectors.Comment: 21 pages, 13 figures and 2 table
    • 

    corecore