29,601 research outputs found

    De Novo Assembly of Nucleotide Sequences in a Compressed Feature Space

    Get PDF
    Sequencing technologies allow for an in-depth analysis of biological species but the size of the generated datasets introduce a number of analytical challenges. Recently, we demonstrated the application of numerical sequence representations and data transformations for the alignment of short reads to a reference genome. Here, we expand out approach for de novo assembly of short reads. Our results demonstrate that highly compressed data can encapsulate the signal suffi- ciently to accurately assemble reads to big contigs or complete genomes

    Graph theoretic methods for the analysis of structural relationships in biological macromolecules

    Get PDF
    Subgraph isomorphism and maximum common subgraph isomorphism algorithms from graph theory provide an effective and an efficient way of identifying structural relationships between biological macromolecules. They thus provide a natural complement to the pattern matching algorithms that are used in bioinformatics to identify sequence relationships. Examples are provided of the use of graph theory to analyze proteins for which three-dimensional crystallographic or NMR structures are available, focusing on the use of the Bron-Kerbosch clique detection algorithm to identify common folding motifs and of the Ullmann subgraph isomorphism algorithm to identify patterns of amino acid residues. Our methods are also applicable to other types of biological macromolecule, such as carbohydrate and nucleic acid structures

    Spaced seeds improve k-mer-based metagenomic classification

    Full text link
    Metagenomics is a powerful approach to study genetic content of environmental samples that has been strongly promoted by NGS technologies. To cope with massive data involved in modern metagenomic projects, recent tools [4, 39] rely on the analysis of k-mers shared between the read to be classified and sampled reference genomes. Within this general framework, we show in this work that spaced seeds provide a significant improvement of classification accuracy as opposed to traditional contiguous k-mers. We support this thesis through a series a different computational experiments, including simulations of large-scale metagenomic projects. Scripts and programs used in this study, as well as supplementary material, are available from http://github.com/gregorykucherov/spaced-seeds-for-metagenomics.Comment: 23 page

    Highly Scalable Algorithms for Robust String Barcoding

    Full text link
    String barcoding is a recently introduced technique for genomic-based identification of microorganisms. In this paper we describe the engineering of highly scalable algorithms for robust string barcoding. Our methods enable distinguisher selection based on whole genomic sequences of hundreds of microorganisms of up to bacterial size on a well-equipped workstation, and can be easily parallelized to further extend the applicability range to thousands of bacterial size genomes. Experimental results on both randomly generated and NCBI genomic data show that whole-genome based selection results in a number of distinguishers nearly matching the information theoretic lower bounds for the problem
    • …
    corecore