5 research outputs found

    Combined adaptive lattice reduction-aided detection and antenna shuffling for DSTTD-OFDM systems

    Get PDF
    In this paper, we consider lattice reduction (LR) aided linear detection in a DSTTD-OFDM (double space-time transmit diversity- orthogonal frequency division multiplexing) system with antenna shuffling. We first derive an antenna shuffling criterion for the LR-aided DSTTD-OFDM system. Next, we propose a combined reduced-feedback and adaptive LR algorithm by exploiting the correlation between OFDM subcarriers in the frequency domain. The LR-aided DSTTD OFDM system with this algorithm requires low computational effort for the LR operation and small feedback information. Simulation results show that a significant improvement could be achieved in the proposed system compared to previous (non-LR-aided) systems under spatially correlated channels. Also, the proposed complexity-reduced approach could greatly lower the system complexity while exhibiting a slight performance loss

    Error Performance of Double Space Time Transmit Diversity Systems

    Get PDF
    The theoretical error performance of double space time transmit diversity (DSTTD) system with optimum combining receiver is analyzed in this paper. by employing both spatial multiplexing and transmit diversity in one system, DSTTD provides practical tradeoff between system spectral efficiency and diversity gain. We derive exact analytical expressions to describe the symbol error rate for DSTTD systems. The effects of both diversity gain and antenna interference introduced by spatial multiplexing are quantified in the results. In addition, the performance of DSTTD system with successive interference cancellation is also investigated. Simulation results are in excellent agreement with the theoretical results obtained in this paper

    Space-time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels

    Full text link
    The space-time bit-interleaved coded modulation (ST-BICM) is an efficient technique to obtain high diversity and coding gain on a block-fading MIMO channel. Its maximum-likelihood (ML) performance is computed under ideal interleaving conditions, which enables a global optimization taking into account channel coding. Thanks to a diversity upperbound derived from the Singleton bound, an appropriate choice of the time dimension of the space-time coding is possible, which maximizes diversity while minimizing complexity. Based on the analysis, an optimized interleaver and a set of linear precoders, called dispersive nucleo algebraic (DNA) precoders are proposed. The proposed precoders have good performance with respect to the state of the art and exist for any number of transmit antennas and any time dimension. With turbo codes, they exhibit a frame error rate which does not increase with frame length.Comment: Submitted to IEEE Trans. on Information Theory, Submission: January 2006 - First review: June 200

    5G Uniform linear arrays with beamforming and spatial multiplexing at 28 GHz, 37 GHz, 64 GHz and 71 GHz for outdoor urban communication: A two-level approach

    Get PDF
    Multiple-input multiple-output (MIMO) spatial multiplexing and beamforming are regarded as key technology enablers for the fifth-generation (5G) millimeter wave (mmWave) mobile radio services. Spatial multiplexing requires sufficiently separated and incoherent antenna array elements, while in the case of beamforming, the antenna array elements need to be coherent and closely spaced. Extensive 28-, 60-, and 73-GHz ultra-wideband propagation measurements in cities of New York City and Austin have indicated formation of two or more spatial lobes for the angles-of-departure and angles-of-arrival even for line-of-sight (LOS) transmission, which is an advantageous feature of mmWave channels, indicating that the transmitting and receiving array antenna elements can be co-located, thus enabling a single architecture for both spatial multiplexing and beamforming. In this paper, a two-level beamforming architecture for uniform linear arrays is proposed that leverages the formation of these spatial lobes. The antenna array is composed of sub-arrays, and the impact of sub-array spacing on the spectral efficiency is investigated through simulations using a channel simulator named NYUSIM developed based on extensive measured data at mmWave frequencies. Simulation results indicate spectral efficiencies of 18.5–28.1 bits/s/Hz with a sub-array spacing of 16 wavelengths for an outdoor mmWave urban LOS channel. The spectral efficiencies obtained are for single-user (SU) MIMO transmission at the recently allocated 5G carrier frequencies in July 2016. The method and results in this paper are useful for designing antenna array architectures for 5G wireless systems

    Linear space-time modulation in multiple-antenna channels

    Get PDF
    This thesis develops linear space–time modulation techniques for (multi-antenna) multi-input multi-output (MIMO) and multiple-input single-output (MISO) wireless channels. Transmission methods tailored for such channels have recently emerged in a number of current and upcoming standards, in particular in 3G and "beyond 3G" wireless systems. Here, these transmission concepts are approached primarily from a signal processing perspective. The introduction part of the thesis describes the transmit diversity concepts included in the WCDMA and cdma2000 standards or standard discussions, as well as promising new transmission methods for MIMO and MISO channels, crucial for future high data-rate systems. A number of techniques developed herein have been adopted in the 3G standards, or are currently being proposed for such standards, with the target of improving data rates, signal quality, capacity or system flexibility. The thesis adopts a model involving matrix-valued modulation alphabets, with different dimensions usually defined over space and time. The symbol matrix is formed as a linear combination of symbols, and the space-dimension is realized by using multiple transmit and receive antennas. Many of the transceiver concepts and modulation methods developed herein provide both spatial multiplexing gain and diversity gain. For example, full-diversity full-rate schemes are proposed where the symbol rate equals the number of transmit antennas. The modulation methods are developed for open-loop transmission. Moreover, the thesis proposes related closed-loop transmission methods, where space–time modulation is combined either with automatic retransmission or multiuser scheduling.reviewe
    corecore