43,930 research outputs found

    Interaction Analysis of Repeated Measure Data

    Get PDF
    Extensive penalized variable selection methods have been developed in the past two decades for analyzing high dimensional omics data, such as gene expressions, single nucleotide polymorphisms (SNPs), copy number variations (CNVs) and others. However, lipidomics data have been rarely investigated by using high dimensional variable selection methods. This package incorporates our recently developed penalization procedures to conduct interaction analysis for high dimensional lipidomics data with repeated measurements. The core module of this package is developed in C++. The development of this software package and the associated statistical methods have been partially supported by an Innovative Research Award from Johnson Cancer Research Center, Kansas State University

    Functional Regression

    Full text link
    Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay and Silverman's 1997 textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fastest growing areas of statistics, fueled by the growing number of applications yielding this type of data. One unique characteristic of FDA is the need to combine information both across and within functions, which Ramsay and Silverman called replication and regularization, respectively. This article will focus on functional regression, the area of FDA that has received the most attention in applications and methodological development. First will be an introduction to basis functions, key building blocks for regularization in functional regression methods, followed by an overview of functional regression methods, split into three types: [1] functional predictor regression (scalar-on-function), [2] functional response regression (function-on-scalar) and [3] function-on-function regression. For each, the role of replication and regularization will be discussed and the methodological development described in a roughly chronological manner, at times deviating from the historical timeline to group together similar methods. The primary focus is on modeling and methodology, highlighting the modeling structures that have been developed and the various regularization approaches employed. At the end is a brief discussion describing potential areas of future development in this field

    Semiparametric GEE analysis in partially linear single-index models for longitudinal data

    Get PDF
    In this article, we study a partially linear single-index model for longitudinal data under a general framework which includes both the sparse and dense longitudinal data cases. A semiparametric estimation method based on a combination of the local linear smoothing and generalized estimation equations (GEE) is introduced to estimate the two parameter vectors as well as the unknown link function. Under some mild conditions, we derive the asymptotic properties of the proposed parametric and nonparametric estimators in different scenarios, from which we find that the convergence rates and asymptotic variances of the proposed estimators for sparse longitudinal data would be substantially different from those for dense longitudinal data. We also discuss the estimation of the covariance (or weight) matrices involved in the semiparametric GEE method. Furthermore, we provide some numerical studies including Monte Carlo simulation and an empirical application to illustrate our methodology and theory.Comment: Published at http://dx.doi.org/10.1214/15-AOS1320 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Estimation and model selection in generalized additive partial linear models for correlated data with diverging number of covariates

    Full text link
    We propose generalized additive partial linear models for complex data which allow one to capture nonlinear patterns of some covariates, in the presence of linear components. The proposed method improves estimation efficiency and increases statistical power for correlated data through incorporating the correlation information. A unique feature of the proposed method is its capability of handling model selection in cases where it is difficult to specify the likelihood function. We derive the quadratic inference function-based estimators for the linear coefficients and the nonparametric functions when the dimension of covariates diverges, and establish asymptotic normality for the linear coefficient estimators and the rates of convergence for the nonparametric functions estimators for both finite and high-dimensional cases. The proposed method and theoretical development are quite challenging since the numbers of linear covariates and nonlinear components both increase as the sample size increases. We also propose a doubly penalized procedure for variable selection which can simultaneously identify nonzero linear and nonparametric components, and which has an asymptotic oracle property. Extensive Monte Carlo studies have been conducted and show that the proposed procedure works effectively even with moderate sample sizes. A pharmacokinetics study on renal cancer data is illustrated using the proposed method.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1194 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore