8 research outputs found

    Zerofinding of analytic functions by structured matrix methods

    Get PDF
    We propose a fast and numerically robust algorithm based on structured numerical linear algebra technology for the computation of the zeros of an analytic function inside the unit circle in the complex plane. At the core of our method there are two matrix algorithms: (a) a fast reduction of a certain linearization of the zerofinding problem to a matrix eigenvalue computation involving a perturbed CMV--like matrix and (b) a fast variant of the QR eigenvalue algorithm suited to exploit the structural properties of this latter matrix. We illustrate the reliability of the proposed method by several numerical examples

    A Fast Hierarchically Preconditioned Eigensolver Based on Multiresolution Matrix Decomposition

    Get PDF
    In this paper we propose a new iterative method to hierarchically compute a relatively large number of leftmost eigenpairs of a sparse symmetric positive matrix under the multiresolution operator compression framework. We exploit the well-conditioned property of every decomposition component by integrating the multiresolution framework into the implicitly restarted Lanczos method. We achieve this combination by proposing an extension-refinement iterative scheme, in which the intrinsic idea is to decompose the target spectrum into several segments such that the corresponding eigenproblem in each segment is well-conditioned. Theoretical analysis and numerical illustration are also reported to illustrate the efficiency and effectiveness of this algorithm

    A Fast Hierarchically Preconditioned Eigensolver Based on Multiresolution Matrix Decomposition

    Get PDF
    In this paper we propose a new iterative method to hierarchically compute a relatively large number of leftmost eigenpairs of a sparse symmetric positive matrix under the multiresolution operator compression framework. We exploit the well-conditioned property of every decomposition component by integrating the multiresolution framework into the implicitly restarted Lanczos method. We achieve this combination by proposing an extension-refinement iterative scheme, in which the intrinsic idea is to decompose the target spectrum into several segments such that the corresponding eigenproblem in each segment is well-conditioned. Theoretical analysis and numerical illustration are also reported to illustrate the efficiency and effectiveness of this algorithm

    Numerical Linear Algebra applications in Archaeology: the seriation and the photometric stereo problems

    Get PDF
    The aim of this thesis is to explore the application of Numerical Linear Algebra to Archaeology. An ordering problem called the seriation problem, used for dating findings and/or artifacts deposits, is analysed in terms of graph theory. In particular, a Matlab implementation of an algorithm for spectral seriation, based on the use of the Fiedler vector of the Laplacian matrix associated with the problem, is presented. We consider bipartite graphs for describing the seriation problem, since the interrelationship between the units (i.e. archaeological sites) to be reordered, can be described in terms of these graphs. In our archaeological metaphor of seriation, the two disjoint nodes sets into which the vertices of a bipartite graph can be divided, represent the excavation sites and the artifacts found inside them. Since it is a difficult task to determine the closest bipartite network to a given one, we describe how a starting network can be approximated by a bipartite one by solving a sequence of fairly simple optimization problems. Another numerical problem related to Archaeology is the 3D reconstruction of the shape of an object from a set of digital pictures. In particular, the Photometric Stereo (PS) photographic technique is considered

    Exploiting rank structures for the numerical treatment of matrix polynomials

    Get PDF

    Positive Definite Matrices: Compression, Decomposition, Eigensolver, and Concentration

    Get PDF
    For many decades, the study of positive-definite (PD) matrices has been one of the most popular subjects among a wide range of scientific researches. A huge mass of successful models on PD matrices has been proposed and developed in the fields of mathematics, physics, biology, etc., leading to a celebrated richness of theories and algorithms. In this thesis, we draw our attention to a general class of PD matrices that can be decomposed as the sum of a sequence of positive-semidefinite matrices. For this class of PD matrices, we will develop theories and algorithms on operator compression, multilevel decomposition, eigenpair computation, and spectrum concentration. We divide these contents into three main parts. In the first part, we propose an adaptive fast solver for the preceding class of PD matrices which includes the well-known graph Laplacians. We achieve this by establishing an adaptive operator compression scheme and a multiresolution matrix factorization algorithm which have nearly optimal performance on both complexity and well-posedness. To develop our methods, we introduce a novel notion of energy decomposition for PD matrices and two important local measurement quantities, which provide theoretical guarantee and computational guidance for the construction of an appropriate partition and a nested adaptive basis. In the second part, we propose a new iterative method to hierarchically compute a relatively large number of leftmost eigenpairs of a sparse PD matrix under the multiresolution matrix compression framework. We exploit the well-conditioned property of every decomposition components by integrating the multiresolution framework into the Implicitly Restarted Lanczos method. We achieve this combination by proposing an extension-refinement iterative scheme, in which the intrinsic idea is to decompose the target spectrum into several segments such that the corresponding eigenproblem in each segment is well-conditioned. In the third part, we derive concentration inequalities on partial sums of eigenvalues of random PD matrices by introducing the notion of k-trace. For this purpose, we establish a generalized Lieb's concavity theorem, which extends the original Lieb's concavity theorem from the normal trace to k-traces. Our argument employs a variety of matrix techniques and concepts, including exterior algebra, mixed discriminant, and operator interpolation.</p

    Krylov methods for large-scale modern problems in numerical linear algebra

    Get PDF
    Large-scale problems have attracted much attention in the last decades since they arise from different applications in several fields. Moreover, the matrices that are involved in those problems are often sparse, this is, the majority of their entries are zero. Around 40 years ago, the most common problems related to large-scale and sparse matrices consisted in solving linear systems, finding eigenvalues and/or eigenvectors, solving least square problems or computing singular value decompositions. However, in the last years, large-scale and sparse problems of different natures have appeared, motivating and challenging numerical linear algebra to develop effective and efficient algorithms to solve them. Common difficulties that appear during the development of algorithms for solving modern large-scale problems are related to computational costs, storage issues and CPU time, given the large size of the matrices, which indicate that direct methods can not be used. This suggests that projection methods based on Krylov subspaces are a good option to develop procedures for solving large-scale and sparse modern problems. In this PhD Thesis we develop novel and original algorithms for solving two large-scale modern problems in numerical linear algebra: first, we introduce the R-CORK method for solving rational eigenvalue problems and, second, we present projection methods to compute the solution of T-Sylvester matrix equations, both based on Krylov subspaces. The R-CORK method is an extension of the compact rational Krylov method (CORK) [104] introduced to solve a family of nonlinear eigenvalue problems that can be expressed and linearized in certain particular ways and which include arbitrary polynomial eigenvalue problems, but not arbitrary rational eigenvalue problems. The R-CORK method exploits the structure of the linearized problem by representing the Krylov vectors in a compact form in order to reduce the cost of storage, resulting in a method with two levels of orthogonalization. The first level of orthogonalization works with vectors of the same size as the original problem, and the second level works with vectors of size much smaller than the original problem. Since vectors of the size of the linearization are never stored or orthogonalized, R-CORK is more efficient from the point of view of memory and orthogonalization costs than the classical rational Krylov method applied to the linearization. Moreover, since the R-CORK method is based on a classical rational Krylov method, the implementation of implicit restarting is possible and we present an efficient way to do it, that preserves the compact representation of the Krylov vectors. We also introduce in this dissertation projection methods for solving the TSylvester equation, which has recently attracted considerable attention as a consequence of its close relation to palindromic eigenvalue problems and other applications. The theory concerning T-Sylvester equations is rather well understood, and before the work in this thesis, there were stable and efficient numerical algorithms to solve these matrix equations for small- to medium- sized matrices. However, developing numerical algorithms for solving large-scale T-Sylvester equations was a completely open problem. In this thesis, we introduce several projection methods based on block Krylov subspaces and extended block Krylov subspaces for solving the T-Sylvester equation when the right-hand side is a low-rank matrix. We also offer an intuition on the expected convergence of the algorithm based on block Krylov subspaces and a clear guidance on which algorithm is the most convenient to use in each situation. All the algorithms presented in this thesis have been extensively tested, and the reported numerical results show that they perform satisfactorily in practice.Adicionalmente se recibió ayuda parcial de los proyectos de investigación: “Structured Numerical Linear Algebra: Matrix Polynomials, Special Matrices, and Conditioning” (Ministerio de Economía y Competitividad de España, Número de proyecto: MTM2012-32542) y “Structured Numerical Linear Algebra for Constant, Polynomial and Rational Matrices” (Ministerio de Economía y Competitividad de España, Número de proyecto: MTM2015-65798-P), donde el investigador principal de ambos proyectos fue Froilán Martínez Dopico.Programa Oficial de Doctorado en Ingeniería MatemáticaPresidente: José Mas Marí.- Secretario: Fernando de Terán Vergara.- Vocal: José Enrique Román Molt

    Studies on the structure of input-output models for national, regional, and multi-regional economic analysis.

    Get PDF
    Massachusetts Institute of Technology. Dept. of Urban Studies and Planning. Thesis. 1969. Ph.D.Vita.Bibliography: leaves 425-444.Ph.D
    corecore