3,558 research outputs found

    Optimization of time-dependent routing problems considering dynamic paths and fuel consumption

    Get PDF
    Ces derniĂšres annĂ©es, le transport de marchandises est devenu un dĂ©fi logistique Ă  multiples facettes. L’immense volume de fret a considĂ©rablement augmentĂ© le flux de marchandises dans tous les modes de transport. MalgrĂ© le rĂŽle vital du transport de marchandises dans le dĂ©veloppement Ă©conomique, il a Ă©galement des rĂ©percussions nĂ©gatives sur l’environnement et la santĂ© humaine. Dans les zones locales et rĂ©gionales, une partie importante des livraisons de marchandises est transportĂ©e par camions, qui Ă©mettent une grande quantitĂ© de polluants. Le Transport routier de marchandises est un contributeur majeur aux Ă©missions de gaz Ă  effet de serre (GES) et Ă  la consommation de carburant. Au Canada, les principaux rĂ©seaux routiers continuent de faire face Ă  des problĂšmes de congestion. Pour rĂ©duire significativement l’impact des Ă©missions de GES reliĂ©es au transport de marchandises sur l’environnement, de nouvelles stratĂ©gies de planification directement liĂ©es aux opĂ©rations de routage sont nĂ©cessaires aux niveaux opĂ©rationnel, environnemental et temporel. Dans les grandes zones urbaines, les camions doivent voyager Ă  la vitesse imposĂ©e par la circulation. Les embouteillages ont des consĂ©quences dĂ©favorables sur la vitesse, le temps de dĂ©placement et les Ă©missions de GES, notamment Ă  certaines pĂ©riodes de la journĂ©e. Cette variabilitĂ© de la vitesse dans le temps a un impact significatif sur le routage et la planification du transport. Dans une perspective plus large, notre recherche aborde les ProblĂšmes de distribution temporels (Time-Dependent Distribution Problems – TDDP) en considĂ©rant des chemins dynamiques dans le temps et les Ă©missions de GES. ConsidĂ©rant que la vitesse d’un vĂ©hicule varie en fonction de la congestion dans le temps, l’objectif est de minimiser la fonction de coĂ»t de transport total intĂ©grant les coĂ»ts des conducteurs et des Ă©missions de GES tout en respectant les contraintes de capacitĂ© et les restrictions de temps de service. En outre, les informations gĂ©ographiques et de trafic peuvent ĂȘtre utilisĂ©es pour construire des multigraphes modĂ©lisant la flexibilitĂ© des chemins sur les grands rĂ©seaux routiers, en tant qu’extension du rĂ©seau classique des clients. Le rĂ©seau physique sous-jacent entre chaque paire de clients pour chaque expĂ©dition est explicitement considĂ©rĂ© pour trouver des chemins de connexion. Les dĂ©cisions de sĂ©lection de chemins complĂštent celles de routage, affectant le coĂ»t global, les Ă©missions de GES, et le temps de parcours entre les nƓuds. Alors que l’espace de recherche augmente, la rĂ©solution des ProblĂšmes de distribution temporels prenant en compte les chemins dynamiques et les vitesses variables dans le temps offre une nouvelle possibilitĂ© d’amĂ©liorer l’efficacitĂ© des plans de transport... Mots clĂ©s : Routage dĂ©pendant du temps; chemins les plus rapides dĂ©pendant du temps; congestion; rĂ©seau routier; heuristique; Ă©missions de gaz Ă  effet de serre; modĂšles d’émission; apprentissage supervisĂ©In recent years, freight transportation has evolved into a multi-faceted logistics challenge. The immense volume of freight has considerably increased the flow of commodities in all transport modes. Despite the vital role of freight transportation in the economic development, it also negatively impacts both the environment and human health. At the local and regional areas, a significant portion of goods delivery is transported by trucks, which emit a large amount of pollutants. Road freight transportation is a major contributor to greenhouse gas (GHG) emissions and to fuel consumption. To reduce the significant impact of freight transportation emissions on environment, new alternative planning and coordination strategies directly related to routing and scheduling operations are required at the operational, environmental and temporal dimensions. In large urban areas, trucks must travel at the speed imposed by traffic, and congestion events have major adverse consequences on speed level, travel time and GHG emissions particularly at certain periods of day. This variability in speed over time has a significant impact on routing and scheduling. From a broader perspective, our research addresses Time-Dependent Distribution Problems (TDDPs) considering dynamic paths and GHG emissions. Considering that vehicle speeds vary according to time-dependent congestion, the goal is to minimize the total travel cost function incorporating driver and GHG emissions costs while respecting capacity constraints and service time restrictions. Further, geographical and traffic information can be used to construct a multigraph modeling path flexibility on large road networks, as an extension to the classical customers network. The underlying physical sub-network between each pair of customers for each shipment is explicitly considered to find connecting road paths. Path selection decisions complement routing ones, impacting the overall cost, GHG emissions, the travel time between nodes, and thus the set of a feasible time-dependent least cost paths. While the search space increases, solving TDDPs considering dynamic paths and time-varying speeds may provide a new scope for enhancing the effectiveness of route plans. One way to reduce emissions is to consider congestion and being able to route traffic around it. Accounting for and avoiding congested paths is possible as the required traffic data is available and, at the same time, has a great potential for both energy and cost savings. Hence, we perform a large empirical analysis of historical traffic and shipping data. Therefore, we introduce the Time-dependent Quickest Path Problem with Emission Minimization, in which the objective function comprises GHG emissions, driver and congestion costs. Travel costs are impacted by traffic due to changing congestion levels depending on the time of the day, vehicle types and carried load. We also develop time-dependent lower and upper bounds, which are both accurate and fast to compute. Computational experiments are performed on real-life instances that incorporate the variation of traffic throughout the day. We then study the quality of obtained paths considering time-varying speeds over the one based only on fixed speeds... Keywords : Time-dependent routing; time-dependent quickest paths; traffic congestion; road network; heuristic; greenhouse gas emissions; emission models; supervised learning

    A Framework for Pre-computated Multi-Constrained Quickest QoS Path Algorithm

    Get PDF
    The era of advance computer networks and advance communication leads the technology to new heights and the algorithms used for the routing needs to be updated side by side parallel with the advancement. This paper presents the new multi-constrained routing algorithm which gives quality of service full-fill the service level agreements with the user. Finding a multi-constrained path is a NP-complete problem, but still the presented algorithm gives the feasible path for the routing in a given polynomial time. Furthermore the performance comparison shows the best results with presented approach and existed approach

    Dealing with residual energy when transmitting data in energy-constrained capacitated networks

    Get PDF
    This paper addresses several problems relating to the energy available after the transmission of a given amount of data in a capacitated network. The arcs have an associated parameter representing the energy consumed during the transmission along the arc and the nodes have limited power to transmit data. In the first part of the paper, we consider the problem of designing a path which maximizes the minimum of the residual energy remaining at the nodes. After formulating the problem and proving the main theoretical results, a polynomial time algorithm is proposed based on computing maxmin paths in a sequence of non-capacitated networks. In the second part of the paper, the problem of obtaining a quickest path in this context is analyzed. First, the bi-objective variant of this problem is considered in which we aim to minimize the transmission time and to maximize the minimum residual energy. An exact polynomial time algorithm is proposed to find a minimal complete set of efficient solutions which amounts to solving shortest path problems. Second, the problem of computing an energy-constrained quickest path which guarantees at least a given residual energy at the nodes is reformulated as a variant of the energy-constrained quickest path problem. The algorithms are tested on a set of benchmark problems providing the optimal solution or the Pareto front within reasonable computing times

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    The 1st International Electronic Conference on Algorithms

    Get PDF
    This book presents 22 of the accepted presentations at the 1st International Electronic Conference on Algorithms which was held completely online from September 27 to October 10, 2021. It contains 16 proceeding papers as well as 6 extended abstracts. The works presented in the book cover a wide range of fields dealing with the development of algorithms. Many of contributions are related to machine learning, in particular deep learning. Another main focus among the contributions is on problems dealing with graphs and networks, e.g., in connection with evacuation planning problems

    Evolutionary optimisation of network flow plans for emergency movement in the built environment

    Get PDF
    Planning for emergency evacuation, and, more generally, for emergency movement involving both evacuation (egress) of occupants and ingress of first responders, presents important and challenging problems. A number of the current issues that arise during emergency incidents are due to the uncertainty and transiency of environmental conditions. In general, movement plans are formulated at building design-time, and those involved, such as building occupants and emergency responders, are left to adapt routing plans to actual events as they unfold. In the context of next-generation emergency response systems, it has been proposed to dynamically plan and route individuals during an emergency event, replanning to take account of changes in the environment. In this work, an emergency movement problem, the Maximal Safest Escape (MSE) problem, is formulated in terms that model the uncertain and transient environmental conditions as a flow problem in time-dependent networks with time-varying and stochastic edge travel-times and capacities (STV Networks). The objective of the MSE problem is to find flow patterns with the a priori maximal probability of successfully conveying all supply from the source to the sink in some given STV Network. The MSE and its deterministic counterpart are proved to be NP-hard. Furthermore, due to inherent complexity in evaluating the exact quality of candidate solutions, a simulation approximation method is presented based on well-known Monte-Carlo sampling methods. Given the complexity of the problem, and using the approximation method for evaluating solutions, it is proposed to tackle the MSE problem using a metaheuristic approach based on an existing framework that integrates Evolutionary Algorithms (EA) with a state-of-the-art statistical ranking and selection method, the Optimal Computing Budget Allocation (OCBA). Several improvements are proposed for the framework to reduce the computational demand of the ranking method. Empirically, the approach is compared with a simple fitness averaging approach and conditions under which the integrated framework is more efficient are investigated. The performance of the EA is compared against upper and lower bounds on optimal solutions. An upper bound is established through the “wait-and-see” bound, and a lower bound by a naıve random search algorithm (RSA). An experimental design is presented that allows for a fair comparison between the EA and the RSA. While there is no guarantee that the EA will find optimal solutions, this work demonstrates that the EA can still find useful solutions; useful solutions are those that are at least better than some baseline, here the lower bound, in terms of solution quality and computational effort. Experimentally, it is demonstrated that the EA performs significantly better than the baseline. Also, the EA finds solutions relatively close to the upper bound; however, it is difficult to establish how optimistic the upper bounds. The main approach is also compared against an existing approach developed for solving a related problem wrapped in a heuristic procedure in order to apply the approach to the MSE. Empirical results show that the heuristic approach requires significantly less computation time, but finds solutions of significantly lower quality. Overall, this work introduces and empirically verifies the efficacy of a metaheuristic based on a framework integrating EAs with a state-of-the-art statistical ranking and selection technique, the OCBA, for a novel flow problem in STV Networks. It is suggested that the lessons learned during the course of this work, along with the specific techniques developed, may be relevant for addressing other flow problems of similar complexity

    Modeling temporal variations in travel demand for intelligent transportation systems

    Full text link
    The imbalance between demand and supply on transportation networks, especially during peak periods, leads to significant level of congestion. Potential solutions to alleviate congestion problems include enhancing system capacity and effective utilization of available capacity--i.e., traffic demand management. Intelligent transportation system (ITS) initiatives such as travel demand management systems (TDMS) and traveler information systems (TIS) refer to demand management as an objective. The success of these initiatives rely heavily on an ability to accurately estimate the temporal variations in travel demand in near real-time. The focus of this dissertation is on developing a methodology for estimating temporal variations in travel demand in urban areas; A significant portion of daily congestion on urban transportation networks occur during peak periods. A majority of trips during peak periods are work trips. The peak study period is divided into several time slices to facilitate simulation and modeling. A methodology is developed to estimate origin-destination (O-D) trip tables for each time slice. Trip attractions during each time slice, for each traffic analysis zone (TAZ), are estimated using pertinent characteristics of the TAZ. The O-D trip tables for each time slice are estimated as a function of trip attractions for the time slice, total trip productions during the peak period and the travel time matrix for the peak period. These O-D trip tables for each time slice and the existing network conditions can be used to assign trips in near real-time; The algorithm is coded using C++ programming language. The model is first tested on various small hypothetical cases with 5 TAZs, 10 TAZs, 15 TAZS and 20 TAZs respectively. The results obtained are as expected. The robustness of the model is tested using the hypothetical case with 10 TAZs. Since, testing and validating the model on large real world networks is important, the model is tested with 1995 data obtained for the Las Vegas valley. The results are consistent with that obtained for the hypothetical cases. The model is tested on Silicon Graphics IP 27 with IRIX version 6.4 as the operating system. For almost all the scenarios, the run time is less than 3 minutes. This strengthens the notion that the model can be implemented in real time

    DEVELOPMENT OF A MIXED-FLOW OPTIMIZATION SYSTEM FOR EMERGENCY EVACUATION IN URBAN NETWORKS

    Get PDF
    In most metropolitan areas, an emergency evacuation may demand a potentially large number of evacuees to use transit systems or to walk over some distance to access their passenger cars. In the process of approaching designated pick-up points for evacuation, the massive number of pedestrians often incurs tremendous burden to vehicles in the roadway network. Hence, one critical issue in a multi-modal evacuation planning is the effective coordination of the vehicle and pedestrian flows by considering their complex interactions. The purpose of this research is to develop an integrated system that is capable of generating the optimal evacuation plan and reflecting the real-world network traffic conditions caused by the conflicts of these two types of flows. The first part of this research is an integer programming model designed to optimize the control plans for massive mixed pedestrian-vehicle flows within the evacuation zone. The proposed model, integrating the pedestrian and vehicle networks, can effectively account for their potential conflicts during the evacuation. The model can generate the optimal routing strategies to guide evacuees moving toward either their pick-up locations or parking areas and can also produce a responsive plan to accommodate the massive pedestrian movements. The second part of this research is a mixed-flow simulation tool that can capture the conflicts between pedestrians, between vehicles, and between pedestrians and vehicles in an evacuation network. The core logic of this simulation model is the Mixed-Cellular Automata (MCA) concept, which, with some embedded components, offers a realistic mechanism to reflect the competing and conflicting interactions between vehicle and pedestrian flows. This study is expected to yield the following contributions * Design of an effective framework for planning a multi-modal evacuation within metropolitan areas; * Development of an integrated mixed-flow optimization model that can overcome various modeling and computing difficulties in capturing the mixed-flow dynamics in urban network evacuation; * Construction and calibration of a new mixed-flow simulation model, based on the Cellular Automaton concept, to reflect various conflicting patterns between vehicle and pedestrian flows in an evacuation network

    Novel applications and contexts for the cognitive packet network

    Get PDF
    Autonomic communication, which is the development of self-configuring, self-adapting, self-optimising and self-healing communication systems, has gained much attention in the network research community. This can be explained by the increasing demand for more sophisticated networking technologies with physical realities that possess computation capabilities and can operate successfully with minimum human intervention. Such systems are driving innovative applications and services that improve the quality of life of citizens both socially and economically. Furthermore, autonomic communication, because of its decentralised approach to communication, is also being explored by the research community as an alternative to centralised control infrastructures for efficient management of large networks. This thesis studies one of the successful contributions in the autonomic communication research, the Cognitive Packet Network (CPN). CPN is a highly scalable adaptive routing protocol that allows for decentralised control in communication. Consequently, CPN has achieved significant successes, and because of the direction of research, we expect it to continue to find relevance. To investigate this hypothesis, we research new applications and contexts for CPN. This thesis first studies Information-Centric Networking (ICN), a future Internet architecture proposal. ICN adopts a data-centric approach such that contents are directly addressable at the network level and in-network caching is easily supported. An optimal caching strategy for an information-centric network is first analysed, and approximate solutions are developed and evaluated. Furthermore, a CPN inspired forwarding strategy for directing requests in such a way that exploits the in-network caching capability of ICN is proposed. The proposed strategy is evaluated via discrete event simulations and shown to be more effective in its search for local cache hits compared to the conventional methods. Finally, CPN is proposed to implement the routing system of an Emergency Cyber-Physical System for guiding evacuees in confined spaces in emergency situations. By exploiting CPN’s QoS capabilities, different paths are assigned to evacuees based on their ongoing health conditions using well-defined path metrics. The proposed system is evaluated via discrete-event simulations and shown to improve survival chances compared to a static system that treats evacuees in the same way.Open Acces

    OPTIMIZATION MODELS AND METHODOLOGIES TO SUPPORT EMERGENCY PREPAREDNESS AND POST-DISASTER RESPONSE

    Get PDF
    This dissertation addresses three important optimization problems arising during the phases of pre-disaster emergency preparedness and post-disaster response in time-dependent, stochastic and dynamic environments. The first problem studied is the building evacuation problem with shared information (BEPSI), which seeks a set of evacuation routes and the assignment of evacuees to these routes with the minimum total evacuation time. The BEPSI incorporates the constraints of shared information in providing on-line instructions to evacuees and ensures that evacuees departing from an intermediate or source location at a mutual point in time receive common instructions. A mixed-integer linear program is formulated for the BEPSI and an exact technique based on Benders decomposition is proposed for its solution. Numerical experiments conducted on a mid-sized real-world example demonstrate the effectiveness of the proposed algorithm. The second problem addressed is the network resilience problem (NRP), involving an indicator of network resilience proposed to quantify the ability of a network to recover from randomly arising disruptions resulting from a disaster event. A stochastic, mixed integer program is proposed for quantifying network resilience and identifying the optimal post-event course of action to take. A solution technique based on concepts of Benders decomposition, column generation and Monte Carlo simulation is proposed. Experiments were conducted to illustrate the resilience concept and procedure for its measurement, and to assess the role of network topology in its magnitude. The last problem addressed is the urban search and rescue team deployment problem (USAR-TDP). The USAR-TDP seeks an optimal deployment of USAR teams to disaster sites, including the order of site visits, with the ultimate goal of maximizing the expected number of saved lives over the search and rescue period. A multistage stochastic program is proposed to capture problem uncertainty and dynamics. The solution technique involves the solution of a sequence of interrelated two-stage stochastic programs with recourse. A column generation-based technique is proposed for the solution of each problem instance arising as the start of each decision epoch over a time horizon. Numerical experiments conducted on an example of the 2010 Haiti earthquake are presented to illustrate the effectiveness of the proposed approach
    • 

    corecore