495 research outputs found

    A symbolic approach for maximally permissive deadlock avoidance in complex resource allocation systems

    Get PDF
    To develop an efficient implementation of the maximally permissive deadlock avoidance policy (DAP) for complex resource allocation systems (RAS), a recent approach focuses on the identification of a set of critical states of the underlying RAS state-space, referred to as minimal boundary unsafe states. The availability of this information enables an expedient one-step-lookahead scheme that prevents the RAS from reaching outside its safe region. This paper presents a symbolic approach that provides those critical states. Furthermore, by taking advantage of certain structural properties regarding RAS safety, the presented method avoids the complete exploration of the underlying RAS state-space. Numerical experimentation demonstrates the efficiency of the approach for developing the maximally permissive DAP for complex RAS with large structure and state-spaces, and its potential advantage over similar approaches that employ more conventional representational and computational methods

    Symbolic Supervisory Control of Resource Allocation Systems

    Get PDF
    <p>Supervisory control theory (SCT) is a formal model-based methodology for verification and synthesis of supervisors for discrete event systems (DES). The main goal is to guarantee that the closed-loop system fulfills given specifications. SCT has great promise to assist engineers with the generation of reliable control functions. This is, for instance, beneficial to manufacturing systems where both products and production equipment might change frequently.</p> <p>The industrial acceptance of SCT, however, has been limited for at least two reasons: (i) the analysis of DES involves an intrinsic difficulty known as the state-space explosion problem, which makes the explicit enumeration of enormous state-spaces for industrial systems intractable; (ii) the synthesized supervisor, represented as a deterministic finite automaton (FA) or an extended finite automaton (EFA), is not straightforward to implement in an industrial controller.</p> <p>In this thesis, to address the aforementioned issues, we study the modeling, synthesis and supervisor representation of DES using binary decision diagrams (BDDs), a compact data structure for representing DES models symbolically. We propose different kinds of BDD-based algorithms for exploring the symbolically represented state-spaces in an effort to improve the abilities of existing supervisor synthesis approaches to handle large-scale DES and represent the obtained supervisors appropriately.</p> <p>Following this spirit, we bring the efficiencies of BDD into a particular DES application domain -- deadlock avoidance for resource allocation systems (RAS) -- a problem that arises in many technological systems including flexible manufacturing systems and multi-threaded software. We propose a framework for the effective and computationally efficient development of the maximally permissive deadlock avoidance policy (DAP) for various RAS classes. Besides the employment of symbolic computation, special structural properties that are possessed by RAS are utilized by the symbolic algorithms to gain additional efficiencies in the computation of the sought DAP. Furthermore, to bridge the gap between the BDD-based representation of the target DAP and its actual industrial realization, we extend this work by introducing a procedure that generates a set of "guard" predicates to represent the resulting DAP.</p> <p>The work presented in this thesis has been implemented in the SCT tool Supremica. Computational benchmarks have manifested the superiority of the proposed algorithms with respect to the previously published results. Hence, the work holds a strong potential for providing robust, practical and efficient solutions to a broad range of supervisory control and deadlock avoidance problems that are experienced in the considered DES application domain.</p

    Formal Verification of Industrial Software and Neural Networks

    Get PDF
    Software ist ein wichtiger Bestandteil unsere heutige Gesellschaft. Da Software vermehrt in sicherheitskritischen Bereichen angewandt wird, müssen wir uns auf eine korrekte und sichere Ausführung verlassen können. Besonders eingebettete Software, zum Beispiel in medizinischen Geräten, Autos oder Flugzeugen, muss gründlich und formal geprüft werden. Die Software solcher eingebetteten Systeme kann man in zwei Komponenten aufgeteilt. In klassische (deterministische) Steuerungssoftware und maschinelle Lernverfahren zum Beispiel für die Bilderkennung oder Kollisionsvermeidung angewandt werden. Das Ziel dieser Dissertation ist es den Stand der Technik bei der Verifikation von zwei Hauptkomponenten moderner eingebetteter Systeme zu verbessern: in C/C++ geschriebene Software und neuronalen Netze. Für beide Komponenten wird das Verifikationsproblem formal definiert und neue Verifikationsansätze werden vorgestellt

    Hybrid Multiresolution Simulation & Model Checking: Network-On-Chip Systems

    Get PDF
    abstract: Designers employ a variety of modeling theories and methodologies to create functional models of discrete network systems. These dynamical models are evaluated using verification and validation techniques throughout incremental design stages. Models created for these systems should directly represent their growing complexity with respect to composition and heterogeneity. Similar to software engineering practices, incremental model design is required for complex system design. As a result, models at early increments are significantly simpler relative to real systems. While experimenting (verification or validation) on models at early increments are computationally less demanding, the results of these experiments are less trustworthy and less rewarding. At any increment of design, a set of tools and technique are required for controlling the complexity of models and experimentation. A complex system such as Network-on-Chip (NoC) may benefit from incremental design stages. Current design methods for NoC rely on multiple models developed using various modeling frameworks. It is useful to develop frameworks that can formalize the relationships among these models. Fine-grain models are derived using their coarse-grain counterparts. Moreover, validation and verification capability at various design stages enabled through disciplined model conversion is very beneficial. In this research, Multiresolution Modeling (MRM) is used for system level design of NoC. MRM aids in creating a family of models at different levels of scale and complexity with well-formed relationships. In addition, a variant of the Discrete Event System Specification (DEVS) formalism is proposed which supports model checking. Hierarchical models of Network-on-Chip components may be created at different resolutions while each model can be validated using discrete-event simulation and verified via state exploration. System property expressions are defined in the DEVS language and developed as Transducers which can be applied seamlessly for model checking and simulation purposes. Multiresolution Modeling with verification and validation capabilities of this framework complement one another. MRM manages the scale and complexity of models which in turn can reduces V&V time and effort and conversely the V&V helps ensure correctness of models at multiple resolutions. This framework is realized through extending the DEVS-Suite simulator and its applicability demonstrated for exemplar NoC models.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications
    corecore