85 research outputs found

    Design and implementation of digital wave filter adaptors

    Get PDF

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    A Lattice Basis Reduction Approach for the Design of Finite Wordlength FIR Filters

    Get PDF
    International audienceMany applications of finite impulse response (FIR) digital filters impose strict format constraints for the filter coefficients. Such requirements increase the complexity of determining optimal designs for the problem at hand. We introduce a fast and efficient method, based on the computation of good nodes for polynomial interpolation and Euclidean lattice basis reduction. Experiments show that it returns quasi-optimal finite wordlength FIR filters; compared to previous approaches it also scales remarkably well (length 125 filters are treated in < 9s). It also proves useful for accelerating the determination of optimal finite wordlength FIR filters

    VLSI signal processing through bit-serial architectures and silicon compilation

    Get PDF

    Studies on Implementation of . . . High Throughput and Low Power Consumption

    Get PDF
    In this thesis we discuss design and implementation of frequency selective digital filters with high throughput and low power consumption. The thesis includes proposed arithmetic transformations of lattice wave digital filters that aim at increasing the throughput and reduce the power consumption of the filter implementation. The thesis also includes two case studies where digital filters with high throughput and low power consumption are required. A method for obtaining high throughput as well as reduced power consumption of digital filters is arithmetic transformation of the filter structure. In this thesis arithmetic transformations of first- and second-order Richards’ allpass sections composed by symmetric two-port adaptors and implemented using carry-save arithmetic are proposed. Such filter sections can be used for implementation of lattice wave digital filters and bireciprocal lattice wave digital filters. The latter structures are efficient for implementation of interpolators and decimators by factors of two. Th

    Multiplierless CSD techniques for high performance FPGA implementation of digital filters.

    Get PDF
    I leverage FastCSD to develop a new, high performance iterative multiplierless structure based on a novel real-time CSD recoding, so that more zero partial products are introduced. Up to 66.7% zero partial products occur compared to 50% in the traditional modified Booth's recoding. Also, this structure reduces the non-zero partial products to a minimum. As a result, the number of arithmetic operations in the carry-save structure is reduced. Thus, an overall speed-up, as well as low-power consumption can be achieved. Furthermore, because the proposed structure involves real time CSD recoding and does not require a fixed value for the multiplier input to be known a priori, the proposed multiplier can be applied to implement digital filters with non-fixed filter coefficients, such as adaptive filters.My work is based on a dramatic new technique for converting between 2's complement and CSD number systems, and results in high-performance structures that are particularly effective for implementing adaptive systems in reconfigurable logic.My research focus is on two key ideas for improving DSP performance: (1) Develop new high performance, efficient shift-add techniques ("multiplierless") to implement the multiply-add operations without the need for a traditional multiplier structure. (2) There is a growing trend toward design prototyping and even production in FPGAs as opposed to dedicated DSP processors or ASICs; leverage this trend synergistically with the new multiplierless structures to improve performance.Implementation of digital signal processing (DSP) algorithms in hardware, such as field programmable gate arrays (FPGAs), requires a large number of multipliers. Fast, low area multiply-adds have become critical in modern commercial and military DSP applications. In many contemporary real-time DSP and multimedia applications, system performance is severely impacted by the limitations of currently available speed, energy efficiency, and area requirement of an onboard silicon multiplier.I also introduce a new multi-input Canonical Signed Digit (CSD) multiplier unit, which requires fewer shift/add/subtract operations and reduced CSD number conversion overhead compared to existing techniques. This results in reduced power consumption and area requirements in the hardware implementation of DSP algorithms. Furthermore, because all the products are produced simultaneously, the multiplication speed and thus the throughput are improved. The multi-input multiplier unit is applied to implement digital filters with non-fixed filter coefficients, such as adaptive filters. The implementation cost of these digital filters can be further reduced by limiting the wordlength of the input signal with little or no sacrifice to the filter performance, which is confirmed by my simulation results. The proposed multiplier unit can also be applied to other DSP algorithms, such as digital filter banks or matrix and vector multiplications.Finally, the tradeoff between filter order and coefficient length in the design and implementation of high-performance filters in Field Programmable Gate Arrays (FPGAs) is discussed. Non-minimum order FIR filters are designed for implementation using Canonical Signed Digit (CSD) multiplierless implementation techniques. By increasing the filter order, the length of the coefficients can be decreased without reducing the filter performance. Thus, an overall hardware savings can be achieved.Adaptive system implementations require real-time conversion of coefficients to Canonical Signed Digit (CSD) or similar representations to benefit from multiplierless techniques for implementing filters. Multiplierless approaches are used to reduce the hardware and increase the throughput. This dissertation introduces the first non-iterative hardware algorithm to convert 2's complement numbers to their CSD representations (FastCSD) using a fixed number of shift and logic operations. As a result, the power consumption and area requirements required for hardware implementation of DSP algorithms in which the coefficients are not known a priori can be greatly reduced. Because all CSD digits are produced simultaneously, the conversion speed and thus the throughput are improved when compared to overlap-and-scan techniques such as Booth's recoding

    Digital filter structures from classical analogue networks

    Get PDF
    Imperial Users onl
    • …
    corecore