27 research outputs found

    Transform processing and coding of images Final report

    Get PDF
    Transform processing and image codin

    Fast Jacket-Haar Transform with Any Size

    Get PDF

    Shuttle/TDRSS Ku-band downlink study

    Get PDF
    Assessing the adequacy of the baseline signal design approach, developing performance specifications for the return link hardware, and performing detailed design and parameter optimization tasks was accomplished by completing five specific study tasks. The results of these tasks show that the basic signal structure design is sound and that the goals can be met. Constraints placed on return link hardware by this structure allow reasonable specifications to be written so that no extreme technical risk areas in equipment design are foreseen. A third channel can be added to the PM mode without seriously degrading the other services. The feasibility of using only a PM mode was shown to exist, however, this will require use of some digital TV transmission techniques. Each task and its results are summarized

    Fast Computation of Sliding Discrete Tchebichef Moments and Its Application in Duplicated Regions Detection

    No full text
    International audienceComputational load remains a major concern when processing signals by means of sliding transforms. In this paper, we present an efficient algorithm for the fast computation of one-dimensional and two-dimensional sliding discrete Tchebichef moments. To do so, we first establish the relationships that exist between the Tchebichef moments of two neighboring windows taking advantage of Tchebichef polynomials’ properties. We then propose an original way to fast compute the moments of one window by utilizing the moment values of its previous window. We further theoretically establish the complexity of our fast algorithm and illustrate its interest within the framework of digital forensics and more precisely the detection of duplicated regions in an audio signal or an image. Our algorithm is used to extract local features of such a signal tampering. Experimental results show that its complexity is independent of the window size, validating the theory. They also exhibit that our algorithm is suitable to digital forensics and beyond to any applications based on sliding Tchebichef moments

    Orthogonal transform feasibility study

    Get PDF
    The application of various orthogonal transformations to communication was investigated, with particular emphasis placed on speech and visual signal processing. The fundamentals of the one- and two-dimensional orthogonal transforms and their application to speech and visual signals are treated in detail

    Metamaterials and their applications towards novel imaging technologies

    Get PDF
    Thesis advisor: Willie J. PadillaThis thesis will describe the implementation of novel imaging applications with electromagnetic metamaterials. Metamaterials have proven to be host to a multitude of interesting physical phenomena and give rich insight electromagnetic theory. This thesis will explore not only the physical theory that give them their interesting electromagnetic properties, but also the many applications of metamaterials. There is a strong need for efficient, low cost imaging solutions, specifically in the longer wavelength regime. While this technology has often been at a standstill due to the lack of natural materials that can effectively operate at these wavelengths, metamaterials have revolutionized the creation of devices to fit these needs. Their scalability has allowed them to access regimes of the electromagnetic spectrum previously unobtainable with natural materials. Along with metamaterials, mathematical techniques can be utilized to make these imaging systems streamlined and effective. Chapter 1 gives a background not only to metamaterials, but also details several parts of general electromagnetic theory that are important for the understanding of metamaterial theory. Chapter 2 discusses one of the most ubiquitous types of metamaterials, the metamaterial absorber, examining not only its physical mechanism, but also its role in metamaterial devices. Chapter 3 gives a theoretical background of imaging at longer wavelengths, specifically single pixel imaging. Chapter 3 also discusses the theory of Compressive Sensing, a mathematical construct that has allowed sampling rates that can exceed the Nyquist Limit. Chapter 4 discusses work that utilizes photoexcitation of a semiconductor to modulate THz radiation. These physical methods were used to create a dynamic THz spatial light modulator and implemented in a single pixel imaging system in the THz regime. Chapter 5 examines active metamaterial modulation through depletion of carriers in a doped semiconductor via application of a bias voltage and its implementation into a similar single pixel imaging system. Additionally, novel techniques are used to access masks generally unobtainable by traditional single pixel imagers. Chapter 6 discusses a completely novel way to encode spatial masks in frequency, rather than time, to create a completely passive millimeter wave imager. Chapter 7 details the use of telecommunication techniques in a novel way to reduce image acquisition time and further streamline the THz single pixel imager. Finally, Chapter 8 will discuss some future outlooks and draw some conclusions from the work that has been done.Thesis (PhD) — Boston College, 2015.Submitted to: Boston College. Graduate School of Arts and Sciences.Discipline: Physics

    Picture coding in viewdata systems

    Get PDF
    Viewdata systems in commercial use at present offer the facility for transmitting alphanumeric text and graphic displays via the public switched telephone network. An enhancement to the system would be to transmit true video images instead of graphics. Such a system, under development in Britain at present uses Differential Pulse Code Modulation (DPCM) and a transmission rate of 1200 bits/sec. Error protection is achieved by the use of error protection codes, which increases the channel requirement. In this thesis, error detection and correction of DPCM coded video signals without the use of channel error protection is studied. The scheme operates entirely at the receiver by examining the local statistics of the received data to determine the presence of errors. Error correction is then undertaken by interpolation from adjacent correct or previousiy corrected data. DPCM coding of pictures has the inherent disadvantage of a slow build-up of the displayed picture at the receiver and difficulties with image size manipulation. In order to fit the pictorial information into a viewdata page, its size has to be reduced. Unitary transforms, typically the discrete Fourier transform (DFT), the discrete cosine transform (DCT) and the Hadamard transform (HT) enable lowpass filtering and decimation to be carried out in a single operation in the transform domain. Size reductions of different orders are considered and the merits of the DFT, DCT and HT are investigated. With limited channel capacity, it is desirable to remove the redundancy present in the source picture in order to reduce the bit rate. Orthogonal transformation decorrelates the spatial sample distribution and packs most of the image energy in the low order coefficients. This property is exploited in bit-reduction schemes which are adaptive to the local statistics of the different source pictures used. In some cases, bit rates of less than 1.0 bit/pel are achieved with satisfactory received picture quality. Unlike DPCM systems, transform coding has the advantage of being able to display rapidly a picture of low resolution by initial inverse transformation of the low order coefficients only. Picture resolution is then progressively built up as more coefficients are received and decoded. Different sequences of picture update are investigated to find that which achieves the best subjective quality with the fewest possible coefficients transmitted

    Spectral analysis of spatial processes

    Get PDF
    corecore