631 research outputs found

    Comparative Study on Medical Image Classification Techniques

    Full text link
    This brief study compares the proposed RGSA algorithm with other recent methods by several experiments to indicate that proposed 3DGLCM and SGLDM with SVM classifier is more efficient and accurate. The accuracy results of this study imply how well their experimental results were found to give more accurate results of classifying tumors. The center of interest for this study was made on supervised classification approaches on 2D MRI images of brain tumors. This paper gives the comparative study of various approaches that was used to identify the tumor cells with classifiers

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    A Novel Technique for Brain Tumor Detection and Classification using T1-Weighted MR Image

    Get PDF
    Brain tumors are particularly perilous because they form when cells in the brain multiply uncontrollably within the skull. Therefore, a fast and accurate method of diagnosing tumors is crucial for the patient’s health. This study proposes a method for evaluating brain cancer images. The phases of implementation for the proposed work are as follows: In the first phase, we compiled a set of specialized feature vector descriptions for advanced classification tasks by employing both deep learning (DL) and conventional feature extraction techniques. In the second phase, we employ a proposed convolutional neural network (CNN) approach and a traditional subset of features from a genetic algorithm (GA) to select our deep features. The third phase involves using the fusion method to merge the prioritized features. Finally, determine whether the brain image is normal or abnormal. The results showed that the proposed method successfully classified objects accurately and revealed their robustness across different ages and acquisition protocols. According to the results, the classification accuracy of the support vector machines (SVM) classifier has significantly improved by combining conventional features and deep learning features (DLF), achieving an accuracy of up to 86.50% using the T1 weighted brain MR image

    Advanced machine learning methods for oncological image analysis

    Get PDF
    Cancer is a major public health problem, accounting for an estimated 10 million deaths worldwide in 2020 alone. Rapid advances in the field of image acquisition and hardware development over the past three decades have resulted in the development of modern medical imaging modalities that can capture high-resolution anatomical, physiological, functional, and metabolic quantitative information from cancerous organs. Therefore, the applications of medical imaging have become increasingly crucial in the clinical routines of oncology, providing screening, diagnosis, treatment monitoring, and non/minimally- invasive evaluation of disease prognosis. The essential need for medical images, however, has resulted in the acquisition of a tremendous number of imaging scans. Considering the growing role of medical imaging data on one side and the challenges of manually examining such an abundance of data on the other side, the development of computerized tools to automatically or semi-automatically examine the image data has attracted considerable interest. Hence, a variety of machine learning tools have been developed for oncological image analysis, aiming to assist clinicians with repetitive tasks in their workflow. This thesis aims to contribute to the field of oncological image analysis by proposing new ways of quantifying tumor characteristics from medical image data. Specifically, this thesis consists of six studies, the first two of which focus on introducing novel methods for tumor segmentation. The last four studies aim to develop quantitative imaging biomarkers for cancer diagnosis and prognosis. The main objective of Study I is to develop a deep learning pipeline capable of capturing the appearance of lung pathologies, including lung tumors, and integrating this pipeline into the segmentation networks to leverage the segmentation accuracy. The proposed pipeline was tested on several comprehensive datasets, and the numerical quantifications show the superiority of the proposed prior-aware DL framework compared to the state of the art. Study II aims to address a crucial challenge faced by supervised segmentation models: dependency on the large-scale labeled dataset. In this study, an unsupervised segmentation approach is proposed based on the concept of image inpainting to segment lung and head- neck tumors in images from single and multiple modalities. The proposed autoinpainting pipeline shows great potential in synthesizing high-quality tumor-free images and outperforms a family of well-established unsupervised models in terms of segmentation accuracy. Studies III and IV aim to automatically discriminate the benign from the malignant pulmonary nodules by analyzing the low-dose computed tomography (LDCT) scans. In Study III, a dual-pathway deep classification framework is proposed to simultaneously take into account the local intra-nodule heterogeneities and the global contextual information. Study IV seeks to compare the discriminative power of a series of carefully selected conventional radiomics methods, end-to-end Deep Learning (DL) models, and deep features-based radiomics analysis on the same dataset. The numerical analyses show the potential of fusing the learned deep features into radiomic features for boosting the classification power. Study V focuses on the early assessment of lung tumor response to the applied treatments by proposing a novel feature set that can be interpreted physiologically. This feature set was employed to quantify the changes in the tumor characteristics from longitudinal PET-CT scans in order to predict the overall survival status of the patients two years after the last session of treatments. The discriminative power of the introduced imaging biomarkers was compared against the conventional radiomics, and the quantitative evaluations verified the superiority of the proposed feature set. Whereas Study V focuses on a binary survival prediction task, Study VI addresses the prediction of survival rate in patients diagnosed with lung and head-neck cancer by investigating the potential of spherical convolutional neural networks and comparing their performance against other types of features, including radiomics. While comparable results were achieved in intra- dataset analyses, the proposed spherical-based features show more predictive power in inter-dataset analyses. In summary, the six studies incorporate different imaging modalities and a wide range of image processing and machine-learning techniques in the methods developed for the quantitative assessment of tumor characteristics and contribute to the essential procedures of cancer diagnosis and prognosis

    Towards personalized diagnosis of Glioblastoma in Fluid-attenuated inversion recovery (FLAIR) by topological interpretable machine learning

    Full text link
    Glioblastoma multiforme (GBM) is a fast-growing and highly invasive brain tumour, it tends to occur in adults between the ages of 45 and 70 and it accounts for 52 percent of all primary brain tumours. Usually, GBMs are detected by magnetic resonance images (MRI). Among MRI, Fluid-attenuated inversion recovery (FLAIR) sequence produces high quality digital tumour representation. Fast detection and segmentation techniques are needed for overcoming subjective medical doctors (MDs) judgment. In the present investigation, we intend to demonstrate by means of numerical experiments that topological features combined with textural features can be enrolled for GBM analysis and morphological characterization on FLAIR. To this extent, we have performed three numerical experiments. In the first experiment, Topological Data Analysis (TDA) of a simplified 2D tumour growth mathematical model had allowed to understand the bio-chemical conditions that facilitate tumour growth: the higher the concentration of chemical nutrients the more virulent the process. In the second experiment topological data analysis was used for evaluating GBM temporal progression on FLAIR recorded within 90 days following treatment (e.g., chemo-radiation therapy - CRT) completion and at progression. The experiment had confirmed that persistent entropy is a viable statistics for monitoring GBM evolution during the follow-up period. In the third experiment we had developed a novel methodology based on topological and textural features and automatic interpretable machine learning for automatic GBM classification on FLAIR. The algorithm reached a classification accuracy up to the 97%.Comment: 22 pages; 16 figure

    Image Analysis for MRI Based Brain Tumor Detection and Feature Extraction Using Biologically Inspired BWT and SVM

    Get PDF
    The segmentation, detection, and extraction of infected tumor area from magnetic resonance (MR) images are a primary concern but a tedious and time taking task performed by radiologists or clinical experts, and their accuracy depends on their experience only. So, the use of computer aided technology becomes very necessary to overcome these limitations. In this study, to improve the performance and reduce the complexity involves in the medical image segmentation process, we have investigated Berkeley wavelet transformation (BWT) based brain tumor segmentation. Furthermore, to improve the accuracy and quality rate of the support vector machine (SVM) based classifier, relevant features are extracted from each segmented tissue. The experimental results of proposed technique have been evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on accuracy, sensitivity, specificity, and dice similarity index coefficient. The experimental results achieved 96.51% accuracy, 94.2% specificity, and 97.72% sensitivity, demonstrating the effectiveness of the proposed technique for identifying normal and abnormal tissues from brain MR images. The experimental results also obtained an average of 0.82 dice similarity index coefficient, which indicates better overlap between the automated (machines) extracted tumor region with manually extracted tumor region by radiologists. The simulation results prove the significance in terms of quality parameters and accuracy in comparison to state-of-the-art techniques

    An Information Theoretic Approach For Feature Selection And Segmentation In Posterior Fossa Tumors

    Get PDF
    Posterior Fossa (PF) is a type of brain tumor located in or near brain stem and cerebellum. About 55% - 70 % pediatric brain tumors arise in the posterior fossa, compared with only 15% - 20% of adult tumors. For segmenting PF tumors we should have features to study the characteristics of tumors. In literature, different types of texture features such as Fractal Dimension (FD) and Multifractional Brownian Motion (mBm) have been exploited for measuring randomness associated with brain and tumor tissues structures, and the varying appearance of tissues in magnetic resonance images (MRI). For selecting best features techniques such as neural network and boosting methods have been exploited. However, neural network cannot descirbe about the properties of texture features. We explore methods such as information theroetic methods which can perform feature selection based on properties of texture features. The primary contribution of this dissertation is investigating efficacy of different image features such as intensity, fractal texture, and level - set shape in segmentation of PF tumor for pediatric patients. We explore effectiveness of using four different feature selection and three different segmentation techniques respectively to discriminate tumor regions from normal tissue in multimodal brain MRI. Our research suggest that Kullback - Leibler Divergence (KLD) measure for feature ranking and selection and Expectation Maximization (EM) algorithm for feature fusion and tumor segmentation offer the best performance for the patient data in this study. To improve segmentation accuracy, we need to consider abnormalities such as cyst, edema and necrosis which surround tumors. In this work, we exploit features which describe properties of cyst and technique which can be used to segment it. To achieve this goal, we extend the two class KLD techniques to multiclass feature selection techniques, so that we can effectively select features for tumor, cyst and non tumor tissues. We compute segemntation accuracy by computing number of pixels segemented to total number of pixels for the best features. For automated process we integrate the inhomoheneity correction, feature selection using KLD and segmentation in an integrated EM framework. To validate results we have used similarity coefficients for computing the robustness of segmented tumor and cyst

    Texture Analysis in Magnetic Resonance Imaging: Review and Considerations for Future Applications

    Get PDF
    Texture analysis is a technique used for the quantification of image texture. It has been successfully used in many fields, and in the past years it has been applied in magnetic resonance imaging (MRI) as a computer-aided diagnostic tool. Quantification of the intrinsic heterogeneity of different tissues and lesions is necessary as they are usually imperceptible to the human eye. In the present chapter, we describe texture analysis as a process consisting of six steps: MRI acquisition, region of interest (ROI) definition, ROI preprocessing, feature extraction, feature selection, and classification. There is a great variety of methods and techniques to be chosen at each step and all of them can somehow affect the outcome of the texture analysis application. We reviewed the literature regarding texture analysis in clinical MRI focusing on the important considerations to be taken at each step of the process in order to obtain maximum benefits and to avoid misleading results
    • …
    corecore