324 research outputs found

    Multihoist cyclic scheduling with fixed processing and transfer times

    Get PDF
    Cataloged from PDF version of article.In this paper, we study the no-wait multihoist cyclic scheduling problem, in which the processing times in the tanks and the transfer times between tanks are constant parameters, and develop a polynomial optimal solution to minimize the production cycle length.We first analyze the problem with a fixed cycle length and identify a group of hoist assignment constraints based on the positions of and the relationships among the part moves in the cycle.We show that the feasibility of the hoist scheduling problem with fixed cycle length is consistent with the feasibility of this group of constraints which can be solved efficiently. We then identify all of the special values of the cycle length at which the feasibility property of the problem may change. Finally, the whole problem is solved optimally by considering the fixed-cycle-length problems at these special values

    A Hierarchical Temporal Planning-Based Approach for Dynamic Hoist Scheduling Problems

    Full text link
    Hoist scheduling has become a bottleneck in electroplating industry applications with the development of autonomous devices. Although there are a few approaches proposed to target at the challenging problem, they generally cannot scale to large-scale scheduling problems. In this paper, we formulate the hoist scheduling problem as a new temporal planning problem in the form of adapted PDDL, and propose a novel hierarchical temporal planning approach to efficiently solve the scheduling problem. Additionally, we provide a collection of real-life benchmark instances that can be used to evaluate solution methods for the problem. We exhibit that the proposed approach is able to efficiently find solutions of high quality for large-scale real-life benchmark instances, with comparison to state-of-the-art baselines

    Model and heuristic solutions for the multiple double-load crane scheduling problem in slab yards

    Get PDF
    This article studies a multiple double-load crane scheduling problem in steel slab yards. Consideration of multiple cranes and their double-load capability makes the scheduling problem more complex. This problem has not been studied previously. We first formulate the problem as a mixed-integer linear programming (MILP) model. A two-phase model-based heuristic is then proposed. To solve large problems, a pointer-based discrete differential evolution (PDDE) algorithm was developed with a dynamic programming (DP) algorithm embedded to solve the one-crane subproblem for a fixed sequence of tasks. Instances of real problems are collected from a steel company to test the performance of the solution methods. The experiment results show that the model can solve small problems optimally, and the solution greatly improves the schedule currently used in practice. The two-phase heuristic generates near-optimal solutions, but it can still only solve comparatively modest problems within reasonable (4 h) computational timeframes. The PDDE algorithm can solve large practical problems relatively quickly and provides better results than the two-phase heuristic solution, demonstrating its effectiveness and efficiency and therefore its suitability for practical use

    Optimization and Scheduling Toolbox

    Get PDF

    Cycle Time Analysis For Photolithography Tools In Semiconductor Manufacturing Industry With Simulation Model : A Case Study [TR940. S618 2008 f rb].

    Get PDF
    Perkembangan industri semikonduktor dalam bidang fabrikasi biasanya melibatkan kos pelaburan yang tinggi terutamanya dalam alatan photolithography. The industry of semiconductor wafer fabrication (“fab”) has invested a huge amount of capital on the manufacturing equipments particular in photolithograph

    Good Production Cycles for Circular Robotic Cells

    No full text
    In this paper, we study cyclic production for throughput optimization in robotic flow-shops. We are focusing on simple production cycles. Robotic cells can have a linear or a circular layout: most classical results on linear cells cannot be extended to circular cells, making it difficult to quantify the potential gain brought by the latter configuration. Moreover, though the problem of finding the best one part production cycle is polynomial for linear cells, it is NP-hard for circular cells. We consider the special case of circular balanced cells. We first consider three basic production cycles, and focus on one which is specific to circular cells, for which we establish the expression of the cycle time. Then, we provide a counterexample to a classical conjecture still open in this configuration. Finally, based on computational experiments, we make a conjecture on the dominance of a family of cycle, which could lead to a polynomial algorithm for finding the best 1-cycle for circular balanced cells
    corecore