2,571 research outputs found

    Orbital optimization in the perfect pairing hierarchy. Applications to full-valence calculations on linear polyacenes

    Full text link
    We describe the implementation of orbital optimization for the models in the perfect pairing hierarchy [Lehtola et al, J. Chem. Phys. 145, 134110 (2016)]. Orbital optimization, which is generally necessary to obtain reliable results, is pursued at perfect pairing (PP) and perfect quadruples (PQ) levels of theory for applications on linear polyacenes, which are believed to exhibit strong correlation in the {\pi} space. While local minima and {\sigma}-{\pi} symmetry breaking solutions were found for PP orbitals, no such problems were encountered for PQ orbitals. The PQ orbitals are used for single-point calculations at PP, PQ and perfect hextuples (PH) levels of theory, both only in the {\pi} subspace, as well as in the full {\sigma}{\pi} valence space. It is numerically demonstrated that the inclusion of single excitations is necessary also when optimized orbitals are used. PH is found to yield good agreement with previously published density matrix renormalization group (DMRG) data in the {\pi} space, capturing over 95% of the correlation energy. Full-valence calculations made possible by our novel, efficient code reveal that strong correlations are weaker when larger bases or active spaces are employed than in previous calculations. The largest full-valence PH calculations presented correspond to a (192e,192o) problem.Comment: 19 pages, 4 figure

    Second-Order Self-Consistent-Field Density-Matrix Renormalization Group

    Full text link
    We present a matrix-product state (MPS)-based quadratically convergent density-matrix renormalization group self-consistent-field (DMRG-SCF) approach. Following a proposal by Werner and Knowles (JCP 82, 5053, (1985)), our DMRG-SCF algorithm is based on a direct minimization of an energy expression which is correct to second-order with respect to changes in the molecular orbital basis. We exploit a simultaneous optimization of the MPS wave function and molecular orbitals in order to achieve quadratic convergence. In contrast to previously reported (augmented Hessian) Newton-Raphson and super-configuration-interaction algorithms for DMRG-SCF, energy convergence beyond a quadratic scaling is possible in our ansatz. Discarding the set of redundant active-active orbital rotations, the DMRG-SCF energy converges typically within two to four cycles of the self-consistent procedureComment: 40 pages, 5 figures, 3 table

    Ground-state phase diagram of the three-band Hubbard model from density matrix embedding theory

    Get PDF
    We determine the ground-state phase diagram of the three-band Hubbard model across a range of model parameters using density matrix embedding theory. We study the atomic-scale nature of the antiferromagnetic (AFM) and superconducting (SC) orders, explicitly including the oxygen degrees of freedom. All parametrizations of the model display AFM and SC phases, but the decay of AFM order with doping is too slow compared to the experimental phase diagram, and further, coexistence of AFM and SC orders occurs in all parameter sets. The local magnetic moment localizes entirely at the copper sites. The magnetic phase diagram is particularly sensitive to Δ_(pd) and t_(pp), and existing estimates of the charge transfer gap Δ_(pd) appear too large in so-called minimal model parametrizations. The electron-doped side of the phase diagram is qualitatively distinct from the hole-doped side and we find an unusual two-peak structure in the SC in the full model parametrization. Examining the SC order at the atomic scale, within the larger scale d_(x²−y²)-wave SC pairing order between Cu-Cu and O-O, we also observe a local p_(x(y)) [or d_(xz(yz))] symmetry modulation of the pair density on the Cu-O bonds. Our work highlights some of the features that arise in a three-band versus one-band picture, the role of the oxygen degrees of freedom in new kinds of atomic-scale SC orders, and the necessity of re-evaluating current parametrizations of the three-band Hubbard model

    Multiconfigurational Short-Range Density-Functional Theory for Open-Shell Systems

    Full text link
    Many chemical systems cannot be described by quantum chemistry methods based on a singlereference wave function. Accurate predictions of energetic and spectroscopic properties require a delicate balance between describing the most important configurations (static correlation) and obtaining dynamical correlation efficiently. The former is most naturally done through a multiconfigurational (MC) wave function, whereas the latter can be done by, e.g., perturbation theory. We have employed a different strategy, namely, a hybrid between multiconfigurational wave functions and density-functional theory (DFT) based on range separation. The method is denoted by MC short-range (sr) DFT and is more efficient than perturbative approaches as it capitalizes on the efficient treatment of the (short-range) dynamical correlation by DFT approximations. In turn, the method also improves DFT with standard approximations through the ability of multiconfigurational wave functions to recover large parts of the static correlation. Until now, our implementation was restricted to closed-shell systems, and to lift this restriction, we present here the generalization of MC-srDFT to open-shell cases. The additional terms required to treat open-shell systems are derived and implemented in the DALTON program. This new method for open-shell systems is illustrated on dioxygen and [Fe(H2O)6]3+.Comment: 37 pages, 3 figures, 4 tables, 1 appendix and 79 references Changes in v2: 1) Appendix B and reference 81 removed 2) Removed dublicated reference and corrected reference 31. 3) Added spin-charge cross terms to GGA (Appendix A). Code changed accordingly and GGA results recalculated. All GGA results are revised -only small modifications observed. Conclusions are unchange
    corecore