2,479 research outputs found

    RAPS: Robust and efficient automatic construction of person-specific deformable models

    Get PDF
    The construction of Facial Deformable Models (FDMs) is a very challenging computer vision problem, since the face is a highly deformable object and its appearance drastically changes under different poses, expressions, and illuminations. Although several methods for generic FDMs construction, have been proposed for facial landmark localization in still images, they are insufficient for tasks such as facial behaviour analysis and facial motion capture where perfect landmark localization is required. In this case, person-specific FDMs (PSMs) are mainly employed, requiring manual facial landmark annotation for each person and person-specific training. In this paper, a novel method for the automatic construction of PSMs is proposed. To this end, an orthonormal subspace which is suitable for facial image reconstruction is learnt. Next, to correct the fittings of a generic model, image congealing (i.e., batch image aliment) is performed by employing only the learnt orthonormal subspace. Finally, the corrected fittings are used to construct the PSM. The image congealing problem is solved by formulating a suitable sparsity regularized rank minimization problem. The proposed method outperforms the state-of-the art methods that is compared to, in terms of both landmark localization accuracy and computational time

    RAPS: Robust and efficient automatic construction of person-specific deformable models

    Get PDF
    The construction of Facial Deformable Models (FDMs) is a very challenging computer vision problem, since the face is a highly deformable object and its appearance drastically changes under different poses, expressions, and illuminations. Although several methods for generic FDMs construction, have been proposed for facial landmark localization in still images, they are insufficient for tasks such as facial behaviour analysis and facial motion capture where perfect landmark localization is required. In this case, person-specific FDMs (PSMs) are mainly employed, requiring manual facial landmark annotation for each person and person-specific training. In this paper, a novel method for the automatic construction of PSMs is proposed. To this end, an orthonormal subspace which is suitable for facial image reconstruction is learnt. Next, to correct the fittings of a generic model, image congealing (i.e., batch image aliment) is performed by employing only the learnt orthonormal subspace. Finally, the corrected fittings are used to construct the PSM. The image congealing problem is solved by formulating a suitable sparsity regularized rank minimization problem. The proposed method outperforms the state-of-the art methods that is compared to, in terms of both landmark localization accuracy and computational time

    Adorym: A multi-platform generic x-ray image reconstruction framework based on automatic differentiation

    Full text link
    We describe and demonstrate an optimization-based x-ray image reconstruction framework called Adorym. Our framework provides a generic forward model, allowing one code framework to be used for a wide range of imaging methods ranging from near-field holography to and fly-scan ptychographic tomography. By using automatic differentiation for optimization, Adorym has the flexibility to refine experimental parameters including probe positions, multiple hologram alignment, and object tilts. It is written with strong support for parallel processing, allowing large datasets to be processed on high-performance computing systems. We demonstrate its use on several experimental datasets to show improved image quality through parameter refinement

    Learning-Based Dequantization For Image Restoration Against Extremely Poor Illumination

    Full text link
    All existing image enhancement methods, such as HDR tone mapping, cannot recover A/D quantization losses due to insufficient or excessive lighting, (underflow and overflow problems). The loss of image details due to A/D quantization is complete and it cannot be recovered by traditional image processing methods, but the modern data-driven machine learning approach offers a much needed cure to the problem. In this work we propose a novel approach to restore and enhance images acquired in low and uneven lighting. First, the ill illumination is algorithmically compensated by emulating the effects of artificial supplementary lighting. Then a DCNN trained using only synthetic data recovers the missing detail caused by quantization

    Study of Computational Image Matching Techniques: Improving Our View of Biomedical Image Data

    Get PDF
    Image matching techniques are proven to be necessary in various fields of science and engineering, with many new methods and applications introduced over the years. In this PhD thesis, several computational image matching methods are introduced and investigated for improving the analysis of various biomedical image data. These improvements include the use of matching techniques for enhancing visualization of cross-sectional imaging modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), denoising of retinal Optical Coherence Tomography (OCT), and high quality 3D reconstruction of surfaces from Scanning Electron Microscope (SEM) images. This work greatly improves the process of data interpretation of image data with far reaching consequences for basic sciences research. The thesis starts with a general notion of the problem of image matching followed by an overview of the topics covered in the thesis. This is followed by introduction and investigation of several applications of image matching/registration in biomdecial image processing: a) registration-based slice interpolation, b) fast mesh-based deformable image registration and c) use of simultaneous rigid registration and Robust Principal Component Analysis (RPCA) for speckle noise reduction of retinal OCT images. Moving towards a different notion of image matching/correspondence, the problem of view synthesis and 3D reconstruction, with a focus on 3D reconstruction of microscopic samples from 2D images captured by SEM, is considered next. Starting from sparse feature-based matching techniques, an extensive analysis is provided for using several well-known feature detector/descriptor techniques, namely ORB, BRIEF, SURF and SIFT, for the problem of multi-view 3D reconstruction. This chapter contains qualitative and quantitative comparisons in order to reveal the shortcomings of the sparse feature-based techniques. This is followed by introduction of a novel framework using sparse-dense matching/correspondence for high quality 3D reconstruction of SEM images. As will be shown, the proposed framework results in better reconstructions when compared with state-of-the-art sparse-feature based techniques. Even though the proposed framework produces satisfactory results, there is room for improvements. These improvements become more necessary when dealing with higher complexity microscopic samples imaged by SEM as well as in cases with large displacements between corresponding points in micrographs. Therefore, based on the proposed framework, a new approach is proposed for high quality 3D reconstruction of microscopic samples. While in case of having simpler microscopic samples the performance of the two proposed techniques are comparable, the new technique results in more truthful reconstruction of highly complex samples. The thesis is concluded with an overview of the thesis and also pointers regarding future directions of the research using both multi-view and photometric techniques for 3D reconstruction of SEM images
    corecore