5,933 research outputs found

    The use of doubly fed reluctance machines for large pumps and wind turbines

    Get PDF

    Virtual reality training and assessment in laparoscopic rectum surgery

    Get PDF
    Background: Virtual-reality (VR) based simulation techniques offer an efficient and low cost alternative to conventional surgery training. This article describes a VR training and assessment system in laparoscopic rectum surgery. Methods: To give a realistic visual performance of interaction between membrane tissue and surgery tools, a generalized cylinder based collision detection and a multi-layer mass-spring model are presented. A dynamic assessment model is also designed for hierarchy training evaluation. Results: With this simulator, trainees can operate on the virtual rectum with both visual and haptic sensation feedback simultaneously. The system also offers surgeons instructions in real time when improper manipulation happens. The simulator has been tested and evaluated by ten subjects. Conclusions: This prototype system has been verified by colorectal surgeons through a pilot study. They believe the visual performance and the tactile feedback are realistic. It exhibits the potential to effectively improve the surgical skills of trainee surgeons and significantly shorten their learning curve. © 2014 John Wiley & Sons, Ltd

    Sensorless Rotor Position Estimation For Brushless DC Motors

    Get PDF
    Brushless DC motor speed is controlled by synchronizing the stator coil current with rotor position in order to acquire an accurate alignment of stator rotating field with rotor permanent-magnet field for efficient transfer of energy. In order to accomplish this goal, a motor shaft is instantly tracked by using rotating rotor position sensors such as Hall effect sensors, optical encoders or resolvers etc. Adding sensors to detect rotor position affects the overall reliability and mechanical robustness of the system. Therefore, a whole new trend of replacing position sensors with sensorless rotor position estimation techniques have a promising demand. Among the sensorless approaches, Back-EMF measurement and high frequency signal injection is the most common. Back-EMF is an electromotive force, directly proportional to the speed of rotor revolutions per second, the greater the speed motor acquires the greater the Back-EMF amplitude appears against the motion of rotation. However, the detected Back-EMF is zero at start-up and does not provide motor speed information at this instant. There-fore, Back-EMF based techniques are highly unfavourable for low speed application specially near zero. On the other hand, signal injection techniques are comparatively developed for low or near zero motor speed applications and they also can estimate the on-line motor parameters exploiting the identification theory on phase voltages and currents signals. The signal injection approach requires expensive additional hardware to inject high frequency signal. Since, motors are typically driven with pulse width modulation techniques, high frequency signals are naturally already present which can be used to detect position. This thesis presents rotor position estimation by measuring the voltage and current signals and also proposes an equivalent permanent-magnet synchronous motor model by fitting thedata to a position dependent circuit model

    Design optimization and performance analysis methodology for PMSMs to improve efficiency in hydraulic applications

    Get PDF
    Pla de Doctorats Industrials de la Generalitat de CatalunyaIn the recent years, water pumping and other hydraulic applications are increasingly demanding motors capable to operate under different working conditions, including variable pressure and volumetric flow demands. Moreover, the technical evolution trend of pumping components is to minimize the size, offering compact and adaptable hydraulic units. Hence, the need to optimize the electric motor part to reduce the volume according this trend, maximizing the efficiency, decreasing material and fabrication costs, reducing noise and improving thermal dissipation have originated the research field of this project. So far different methodologies have been focused on designing electrical machines considering few aspects, such as the rated conditions with some size limitations. In addition, the optimization strategies have been based on single operation conditions, improving multiple aspects but not considering the overall performance of the machine and its influence with the working system. This research changes the design and optimization paradigm, focusing on defining beforehand the desired performance of the electrical machine in relation with the application system. The customization is not limited to an operating point but to the whole performance space, which in this case is the torque-speed area. Thus, the designer has plenty of freedom to study the system, and define the desired motor performance establishing the size, thermal and mechanical limitations from the beginning of the process. Moreover, when designing and optimizing electrical machines, the experimental validation is of major importance. From an industrial scope so far, the testing methodologies are focused on evaluating point by point the electrical machine performance, being a robust and trustable way to measure and validate the electrical machine characteristics. Nevertheless,this method requires a large time to prepare the experimental setup and to evaluate the whole motor performance. For this reason, there is a special interest on improving parameter estimation and performance evaluation techniques for electrical machines to reduce evaluation time, setup complexity and increase the number of physical magnitudes to measure in order to have deeper information. This research also develops methodologies to extend the electrical machine experimental validation providing information to evaluate the motor performance. This doctoral thesis has been developed with a collaboration agreement between UPC and the company MIDTAL TALENTOS S.L. The thesis is included within the Industrial Doctorates program 2018 DI 019 promoted by the Generalitat de Catalunya.En los últimos años, el bombeo de agua, entre otras aplicaciones hidráulicas, exige cada vez más motores capaces de operar en diferentes condiciones de trabajo, incluyendo las demandas variables de presión y caudal volumétrico. Además, la evolución técnica de los componentes de bombeo está cada vez más minimizando el tamaño ofreciendo unidades hidráulicas compactas y adaptables. De ahí la necesidad de optimizar la parte del motor eléctrico para reducir el volumen de acuerdo con esta tendencia, maximizando la eficiencia, disminuyendo los costos de material y fabricación, reduciendo el ruido y mejorando la disipación térmica. Todos estos factores han creado el campo de investigación sobre el cual se desarrolla este proyecto. Hasta ahora las metodologías se han centrado en diseñar las máquinas eléctricas considerando unos pocos aspectos técnicos, como las condiciones nominales con algunas limitaciones de tamaño. Además, las estrategias de optimización se han basado en condiciones de operación única, mejorando múltiples aspectos sin considerar el rendimiento general de la máquina y su influencia en el sistema de trabajo. Esta investigación cambia el paradigma de diseño y optimización centrándose en definir de antemano el rendimiento deseado de la máquina eléctrica en relación con el sistema de aplicación. La personalización no se limita a un punto de funcionamiento sino a todo el espacio de operación, que en este caso se expresa en el espacio par-velocidad. Así, el diseñador tiene libertad para estudiar el sistema, definir el rendimiento deseado del motor estableciendo el tamaño, limitaciones térmicas y mecánicas desde el inicio del proceso. Además, a la hora de diseñar y optimizar máquinas eléctricas, la validación experimental es de gran importancia. En el ámbito industrial hasta ahora, las metodologías de ensayo han sido enfocadas a evaluar punto por punto la máquina eléctrica, siendo una forma robusta y confiable de medir y validar sus características. Sin embargo, este método requiere mucho tiempo para preparar la configuración experimental y evaluar el motor en toda su zona de operación. Por esta razón, existe un interés especial en mejorar la estimación de parámetros y las técnicas de evaluación de la operación de las máquinas eléctricas reduciendo tiempo, complejidad y aumentando el número de magnitudes físicas a medir teniendo más información sobre la máquina. Esta investigación también desarrolla metodologías para extender la validación experimental de la máquina eléctrica proporcionando información para evaluar el rendimiento del motor. Esta tesis doctoral ha sido desarrollada con un convenio de colaboración entre la Universidad Politécnica de Cataluña UPC y la empresa MIDTAL TALENTOS S.L. La tesis se engloba dentro del plan de Doctorados Industriales 2018 DI 019 impulsado por la Generalitat de Catalunya.Postprint (published version

    Healthy and open phase PMaSynRM model based on virtual reluctance concept

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The trend in the industrial power electronics electrical drives is to reach high power density and high efficiency in variable load conditions at cost-effective unwasteful designs. Currently, motors with permanent magnets (such as IPMSM and PMaSynRM) are of great interest because of compactness, low losses, and high torque capability. The performance of a drive system can be predicted with a motor electromagnetic authentic nonlinear model. In this paper, a novel, fast, and precise motor model of PMaSynRM based on virtual reluctance (VR) is proposed. It takes into account the cross saturation, winding distribution, space harmonics, slotting effect, and stepped skewing. The virtual reluctances are identified by finite element analysis (FEA) and implemented in the time-stepping simulation. The flux inversion is not required. The proposed concept is useful in the rotating field or phase quantities (for open phase simulation). The model is also discretized for SiL and HiL applications. Finally, the validation in FEA and experimental setup was performed.This work was supported in part by Spanish Ministry of Economy and Competitiveness under TRA2016-80472-R Research Project and Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya under 2017SGR967.Peer ReviewedPostprint (author's final draft

    Modeling and Optimization Algorithm for SiC-based Three-phase Motor Drive System

    Get PDF
    More electric aircraft (MEA) and electrified aircraft propulsion (EAP) becomes the important topics in the area of transportation electrifications, expecting remarkable environmental and economic benefits. However, they bring the urgent challenges for the power electronics design since the new power architecture in the electrified aircraft requires many benchmark designs and comparisons. Also, a large number of power electronics converter designs with different specifications and system-level configurations need to be conducted in MEA and EAP, which demands huge design efforts and costs. Moreover, the long debugging and testing process increases the time to market because of gaps between the paper design and implementation. To address these issues, this dissertation covers the modeling and optimization algorithms for SiC-based three-phase motor drive systems in aviation applications. The improved models can help reduce the gaps between the paper design and implementation, and the implemented optimization algorithms can reduce the required execution time of the design program. The models related to magnetic core based inductors, geometry layouts, switching behaviors, device loss, and cooling design have been explored and improved, and several modeling techniques like analytical, numerical, and curve-fitting methods are applied. With the developed models, more physics characteristics of power electronics components are incorporated, and the design accuracy can be improved. To improve the design efficiency and to reduce the design time, optimization schemes for the filter design, device selection combined with cooling design, and system-level optimization are studied and implemented. For filter design, two optimization schemes including Ap based weight prediction and particle swarm optimization are adopted to reduce searching efforts. For device selection and related cooling design, a design iteration considering practical layouts and switching speed is proposed. For system-level optimization, the design algorithm enables the evaluation of different topologies, modulation schemes, switching frequencies, filter configurations, cooling methods, and paralleled converter structure. To reduce the execution time of system-level optimization, a switching function based simulation and waveform synthesis method are adopted. Furthermore, combined with the concept of design automation, software integrated with the developed models, optimization algorithms, and simulations is developed to enable visualization of the design configurations, database management, and design results

    High efficiency sensorless fault tolerant control of permanent magnet assisted synchronous reluctance motor

    Get PDF
    In the last decades, the development trends of high efficiency and compact electric drives on the motor side focused on Permanent Magnet Synchronous Machines (PMSMs) equipped with magnets based on the rare-earth elements. The permanent magnet components, however, dramatically impact the overall bill of materials of motor construction. This aspect has become even more critical due to the price instability of the rare-earth elements. This is why the Permanent Magnet Assisted Synchronous Reluctance Motor (PMaSynRM) concept was brought to the spotlight as it gives comparable torque density and similar efficiencies as PMSM although at a lower price accredited for the use of magnets built with ferrite composites. Despite these advantages, PMaSynRM drive design is much more challenging because of nonlinear inductances resulting from deep cross saturation effects. It is also true for multi-phase PMSM motors that have gained a lot of attention as they proportionally split power by the increased number of phases. Furthermore, they offer fault-tolerant operation while one or more phases are down due to machine, inverter, or sensor fault. The number of phases further increases the overall complexity for modeling and control design. It is clear then that a combination of multi-phase with PMaSynRM concept brings potential benefits but confronts standard modeling methods and drive development techniques. This Thesis consists of detailed modeling, control design, and implementation of a five-phase PMaSynRM drive for normal healthy and open phase fault-tolerant applications. Special emphasis is put on motor modeling that comprises saturation and space harmonics together with axial asymmetry introduced by rotor skewing. Control strategies focused on high efficiency are developed and the position estimation based on the observer technique is derived. The proposed models are validated through Finite Element Analysis (FEA) and experimental campaign. The results show the effectiveness of the elaborated algorithms and methods that are viable for further industrialization in PMaSynRM drives with fault-tolerant capabilities.En últimas décadas, las tendencias de desarrollo de accionamientos eléctricos compactos y de alta eficiencia en el lado del motor se centraron en las maquinas síncronas de imanes permanentes (PMSM) equipadas con imanes basados en elementos de tierras raras. Sin embargo, los componentes de imán permanente impactan dramáticamente en el coste de construcción del motor. Este aspecto se ha vuelto aún más crítico debido a la inestabilidad de precios de los elementos de tierras raras. Esta es la razón por la que el concepto de motor de reluctancia síncrona asistido por imán permanente (PMaSynRM) se ha tomado en consideración, ya que ofrece una densidad de par comparable y eficiencias similares a las de PMSM, aunque a un precio más bajo acreditado para el uso de imanes construidos con compuestos de ferritas. A pesar de drive PMaSynRM resulta muy complejo debido a las inductancias no lineales que resultan de los efectos de saturación cruzada profunda. Esto también es cierto para los motores PMSM polifásicos que han ganado mucha atención en los últimos años, en los que se divide proporcionalmente la potencia por el mayor número de fases. Además, ofrecen operación tolerante a fallas mientras una o más fases están inactivas debido a fallas en la máquina, el inversor o el sensor. Sin embargo, el número de fases aumenta aún más la complejidad general del diseño de modelado y control. Está claro entonces que una combinación de multifase con el concepto PMaSynRM tiene beneficios potenciales, pero dificulta los métodos de modelado estándar y las técnicas de desarrollo del sistema de accionamiento. Esta tesis consiste en el modelado detallado, el diseño de control y la implementación de un drive PMaSynRM de cinco fases para aplicaciones normales en buen estado y tolerantes a fallas de fase abierta. Se pone especial énfasis en el modelado del motor que comprende la saturación y los armónicos espaciales junto con la asimetría axial introducida por la inclinación del rotor. Se desarrollan estrategias de control enfocadas a la alta eficiencia y se deriva la estimación de posición basada en la técnica del observador. Los modelos propuestos se validan mediante Análisis de Elementos Finitos (FEA) y resultados experimentales. Los resultados muestran la efectividad de los algoritmos y métodos elaborados, que resultan viables para la industrialización de unidades PMaSynRM con capacidades tolerantes a fallas.Postprint (published version

    Recent Progress in Electrical Generators for Oceanic Wave Energy Conversion

    Get PDF
    Oceanic wave energy extraction through electrical generator is one of the most interesting topics in the field of power engineering. Almost all the existing relevant review paper focus on electrical generator with the working principle of electromagnetic induction or piezoelectric or triboelectric effect. In this paper, all the existing types (based on principle of operation) of electrical generator used for wave power harvesting are discussed. This paper not only covers recent progress in electrical power generation by electro-magnetic induction, piezoelectric generator, and electrostatic induction, but also presents critical comparative review as well where suitable use and weakness of each type of generators are discussed. Moreover, the application of advanced magnetic core, winding, and permanent magnets are discussed with extensive explanation which are not focused in the existing reviews. Various new constructional features of the electrical generators such as split translator flux switching, two-point absorber, triangular coil, dual port linear generator, piezoelectric, triboelectric nanogenerator, etc. are highlighted with principles of operation. It also includes emerging human intervened optimization method for determining optimum shape of generator and cooling system which is necessary to prevent demagnetization of the permanent magnet. Finally, the way of supply the generated electrical power form the generator to load/grid is thoroughly described in a separate section that would be obvious for successful operation. The comparison among all types of generators in terms of output voltage, current, scale of power production, power-frequency characteristics, power density, cascading, and approaches are tabulated in this paper

    Modeling and simulation of magnetic components in electric circuits

    No full text
    This thesis demonstrates how by using a variety of model constructions and parameter extraction techniques, a range of magnetic component models can be developed for a wide range of application areas, with different levels of accuracy appropriate for the simulation required. Novel parameter extraction and model optimization methods are developed, including the innovative use of Genetic Algorithms and Metrics, to ensure the accuracy of the material models used. Multiple domain modeling, including the magnetic, thermal and magnetic aspects are applied in integrated simulations to ensure correct and complete dynamic behaviour under a range of environmental conditions. Improvements to the original Jiles-Atherton theory to more accurately model loop closure and dynamic thermal behaviour are proposed, developed and tested against measured results. Magnetic Component modeling techniques are reviewed and applied in practical examples to evaluate the effectiveness of lumped models, 1D and 2D Finite Element Analysis models and coupling Finite Element Analysis with Circuit Simulation. An original approach, linking SPICE with a Finite Element Analysis solver is presented and evaluated. Practical test cases illustrate the effectiveness of the models used in a variety of contexts. A Passive Fault Current Limiter (FCL) was investigated using a saturable inductor with a magnet offset, and the comparison between measured and simulated results allows accurate prediction of the behaviour of the device. A series of broadband hybrid transformers for ADSL were built, tested, modeled and simulated. Results show clearly how the Total Harmonic Distortion (THD), Inter Modulation Distortion (IMD) and Insertion Loss (IL) can be accurately predicted using simulation.A new implementation of ADSL transformers using a planar magnetic structure is presented, with results presented that compare favourably with current wire wound techniques. The inclusion of transformer models in complete ADSL hybrid simulations demonstrate the effectiveness of the models in the context of a complete electrical system in predicting the overall circuit performance

    Numerical and Analytical Methods in Electromagnetics

    Get PDF
    Like all branches of physics and engineering, electromagnetics relies on mathematical methods for modeling, simulation, and design procedures in all of its aspects (radiation, propagation, scattering, imaging, etc.). Originally, rigorous analytical techniques were the only machinery available to produce any useful results. In the 1960s and 1970s, emphasis was placed on asymptotic techniques, which produced approximations of the fields for very high frequencies when closed-form solutions were not feasible. Later, when computers demonstrated explosive progress, numerical techniques were utilized to develop approximate results of controllable accuracy for arbitrary geometries. In this Special Issue, the most recent advances in the aforementioned approaches are presented to illustrate the state-of-the-art mathematical techniques in electromagnetics
    corecore