242 research outputs found

    Monolithic Overlapping Schwarz Domain Decomposition Methods with GDSW Coarse Spaces for Saddle Point Problems

    Get PDF
    Monolithic overlapping Schwarz preconditioners for saddle point problems of Stokes, Navier-Stokes, and mixed linear elasticity ty e are presented. For the first time, coarse spaces obtained from the GDSW (Generalized Dryja-Smith-Widlund) approach are used in such a setting. Numerical results of our parallel implementation are presented for several model problems. In particular, cases are considered where the problem cannot or should not b e reduced using local static condensation, e.g., Stokes, Navier-Stokes or mixed elasticity problems with continuous pressure spaces. In the new monolithic preconditioners, the local overlapping problems and the coarse problem are saddle point problems with the same structure as the original problem. Our parallel implementation of these preconditioners is based on the FROSch (Fast and Robust Overlapping Schwarz) library, which is part of the Trilinos package ShyLU. The implementation is algebraic in the sense that the preconditioners can be constructed from the fully assembled stiffness matrix and information about the block structure of the problem. Parallel scalability results for several thousand cores for Stokes, Navier-Stokes, and mixed linear elasticity model problems are reported. Each of the local problems is solved using a direct solver in serial mo de, whereas the coarse problem is solved using a direct solver in serial or MPI-parallel mode or using an MPI-parallel iterative Krylov solve

    Seventh Copper Mountain Conference on Multigrid Methods

    Get PDF
    The Seventh Copper Mountain Conference on Multigrid Methods was held on 2-7 Apr. 1995 at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection shows its rapid trend to further diversity and depth

    Efficient Nonlinear Solvers for Nodal High-Order Finite Elements in 3D

    Get PDF
    Conventional high-order finite element methods are rarely used for industrial problems because the Jacobian rapidly loses sparsity as the order is increased, leading to unaffordable solve times and memory requirements. This effect typically limits order to at most quadratic, despite the favorable accuracy and stability properties offered by quadratic and higher order discretizations. We present a method in which the action of the Jacobian is applied matrix-free exploiting a tensor product basis on hexahedral elements, while much sparser matrices based on Q 1 sub-elements on the nodes of the high-order basis are assembled for preconditioning. With this "dual-order” scheme, storage is independent of spectral order and a natural taping scheme is available to update a full-accuracy matrix-free Jacobian during residual evaluation. Matrix-free Jacobian application circumvents the memory bandwidth bottleneck typical of sparse matrix operations, providing several times greater floating point performance and better use of multiple cores with shared memory bus. Computational results for the p-Laplacian and Stokes problem, using block preconditioners and AMG, demonstrate mesh-independent convergence rates and weak (bounded) dependence on order, even for highly deformed meshes and nonlinear systems with several orders of magnitude dynamic range in coefficients. For spectral orders around 5, the dual-order scheme requires half the memory and similar time to assembled quadratic (Q 2) elements, making it very affordable for general us

    Algebraic multigrid for stabilized finite element discretizations of the Navier Stokes equation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2002.Includes bibliographical references (p. 141-152).A multilevel method for the solution of systems of equations generated by stabilized Finite Element discretizations of the Euler and Navier Stokes equations on generalized unstructured grids is described. The method is based on an elemental agglomeration multigrid which produces a hierarchical sequence of coarse subspaces. Linear combinations of the basis functions from a given space form the next subspace and the use of the Galerkin Coarse Grid Approximation (GCA) within an Algebraic Multigrid (AMG) context properly defines the hierarchical sequence. The multigrid coarse spaces constructed by the elemental agglomeration algorithm are based on a semi-coarsening scheme designed to reduce grid anisotropy. The multigrid transfer operators are induced by the graph of the coarse space mesh and proper consideration is given to the boundary conditions for an accurate representation of the coarse space operators. A generalized line implicit relaxation scheme is also described where the lines are constructed to follow the direction of strongest coupling. The solution algorithm is motivated by the decomposition of the system characteristics into acoustic and convective modes. Analysis of the application of elemental agglomeration AMG (AMGe) to stabilized numerical schemes shows that a characteristic length based rescaling of the numerical stabilization is necessary for a consistent multigrid representation.by Tolulope Olawale Okusanya.Ph.D

    Schnelle Löser für Partielle Differentialgleichungen

    Get PDF
    The workshop Schnelle Löser für partielle Differentialgleichungen, organised by Randolph E. Bank (La Jolla), Wolfgang Hackbusch (Leipzig), and Gabriel Wittum (Frankfurt am Main), was held May 22nd–May 28th, 2011. This meeting was well attended by 54 participants with broad geographic representation from 7 countries and 3 continents. This workshop was a nice blend of researchers with various backgrounds
    • …
    corecore