15,774 research outputs found

    Progressive construction of a parametric reduced-order model for PDE-constrained optimization

    Full text link
    An adaptive approach to using reduced-order models as surrogates in PDE-constrained optimization is introduced that breaks the traditional offline-online framework of model order reduction. A sequence of optimization problems constrained by a given Reduced-Order Model (ROM) is defined with the goal of converging to the solution of a given PDE-constrained optimization problem. For each reduced optimization problem, the constraining ROM is trained from sampling the High-Dimensional Model (HDM) at the solution of some of the previous problems in the sequence. The reduced optimization problems are equipped with a nonlinear trust-region based on a residual error indicator to keep the optimization trajectory in a region of the parameter space where the ROM is accurate. A technique for incorporating sensitivities into a Reduced-Order Basis (ROB) is also presented, along with a methodology for computing sensitivities of the reduced-order model that minimizes the distance to the corresponding HDM sensitivity, in a suitable norm. The proposed reduced optimization framework is applied to subsonic aerodynamic shape optimization and shown to reduce the number of queries to the HDM by a factor of 4-5, compared to the optimization problem solved using only the HDM, with errors in the optimal solution far less than 0.1%

    Gradient type optimization methods for electronic structure calculations

    Full text link
    The density functional theory (DFT) in electronic structure calculations can be formulated as either a nonlinear eigenvalue or direct minimization problem. The most widely used approach for solving the former is the so-called self-consistent field (SCF) iteration. A common observation is that the convergence of SCF is not clear theoretically while approaches with convergence guarantee for solving the latter are often not competitive to SCF numerically. In this paper, we study gradient type methods for solving the direct minimization problem by constructing new iterations along the gradient on the Stiefel manifold. Global convergence (i.e., convergence to a stationary point from any initial solution) as well as local convergence rate follows from the standard theory for optimization on manifold directly. A major computational advantage is that the computation of linear eigenvalue problems is no longer needed. The main costs of our approaches arise from the assembling of the total energy functional and its gradient and the projection onto the manifold. These tasks are cheaper than eigenvalue computation and they are often more suitable for parallelization as long as the evaluation of the total energy functional and its gradient is efficient. Numerical results show that they can outperform SCF consistently on many practically large systems.Comment: 24 pages, 11 figures, 59 references, and 1 acknowledgement

    On an adaptive regularization for ill-posed nonlinear systems and its trust-region implementation

    Full text link
    In this paper we address the stable numerical solution of nonlinear ill-posed systems by a trust-region method. We show that an appropriate choice of the trust-region radius gives rise to a procedure that has the potential to approach a solution of the unperturbed system. This regularizing property is shown theoretically and validated numerically.Comment: arXiv admin note: text overlap with arXiv:1410.278

    Data Driven Surrogate Based Optimization in the Problem Solving Environment WBCSim

    Get PDF
    Large scale, multidisciplinary, engineering designs are always difficult due to the complexity and dimensionality of these problems. Direct coupling between the analysis codes and the optimization routines can be prohibitively time consuming due to the complexity of the underlying simulation codes. One way of tackling this problem is by constructing computationally cheap(er) approximations of the expensive simulations, that mimic the behavior of the simulation model as closely as possible. This paper presents a data driven, surrogate based optimization algorithm that uses a trust region based sequential approximate optimization (SAO) framework and a statistical sampling approach based on design of experiment (DOE) arrays. The algorithm is implemented using techniques from two packages—SURFPACK and SHEPPACK that provide a collection of approximation algorithms to build the surrogates and three different DOE techniques—full factorial (FF), Latin hypercube sampling (LHS), and central composite design (CCD)—are used to train the surrogates. The results are compared with the optimization results obtained by directly coupling an optimizer with the simulation code. The biggest concern in using the SAO framework based on statistical sampling is the generation of the required database. As the number of design variables grows, the computational cost of generating the required database grows rapidly. A data driven approach is proposed to tackle this situation, where the trick is to run the expensive simulation if and only if a nearby data point does not exist in the cumulatively growing database. Over time the database matures and is enriched as more and more optimizations are performed. Results show that the proposed methodology dramatically reduces the total number of calls to the expensive simulation runs during the optimization process
    • …
    corecore