79 research outputs found

    Machine Intelligence for Advanced Medical Data Analysis: Manifold Learning Approach

    Get PDF
    In the current work, linear and non-linear manifold learning techniques, specifically Principle Component Analysis (PCA) and Laplacian Eigenmaps, are studied in detail. Their applications in medical image and shape analysis are investigated. In the first contribution, a manifold learning-based multi-modal image registration technique is developed, which results in a unified intensity system through intensity transformation between the reference and sensed images. The transformation eliminates intensity variations in multi-modal medical scans and hence facilitates employing well-studied mono-modal registration techniques. The method can be used for registering multi-modal images with full and partial data. Next, a manifold learning-based scale invariant global shape descriptor is introduced. The proposed descriptor benefits from the capability of Laplacian Eigenmap in dealing with high dimensional data by introducing an exponential weighting scheme. It eliminates the limitations tied to the well-known cotangent weighting scheme, namely dependency on triangular mesh representation and high intra-class quality of 3D models. In the end, a novel descriptive model for diagnostic classification of pulmonary nodules is presented. The descriptive model benefits from structural differences between benign and malignant nodules for automatic and accurate prediction of a candidate nodule. It extracts concise and discriminative features automatically from the 3D surface structure of a nodule using spectral features studied in the previous work combined with a point cloud-based deep learning network. Extensive experiments have been conducted and have shown that the proposed algorithms based on manifold learning outperform several state-of-the-art methods. Advanced computational techniques with a combination of manifold learning and deep networks can play a vital role in effective healthcare delivery by providing a framework for several fundamental tasks in image and shape processing, namely, registration, classification, and detection of features of interest

    PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks

    Full text link
    Unsupervised text embedding methods, such as Skip-gram and Paragraph Vector, have been attracting increasing attention due to their simplicity, scalability, and effectiveness. However, comparing to sophisticated deep learning architectures such as convolutional neural networks, these methods usually yield inferior results when applied to particular machine learning tasks. One possible reason is that these text embedding methods learn the representation of text in a fully unsupervised way, without leveraging the labeled information available for the task. Although the low dimensional representations learned are applicable to many different tasks, they are not particularly tuned for any task. In this paper, we fill this gap by proposing a semi-supervised representation learning method for text data, which we call the \textit{predictive text embedding} (PTE). Predictive text embedding utilizes both labeled and unlabeled data to learn the embedding of text. The labeled information and different levels of word co-occurrence information are first represented as a large-scale heterogeneous text network, which is then embedded into a low dimensional space through a principled and efficient algorithm. This low dimensional embedding not only preserves the semantic closeness of words and documents, but also has a strong predictive power for the particular task. Compared to recent supervised approaches based on convolutional neural networks, predictive text embedding is comparable or more effective, much more efficient, and has fewer parameters to tune.Comment: KDD 201

    Learning with Scalability and Compactness

    Get PDF
    Artificial Intelligence has been thriving for decades since its birth. Traditional AI features heuristic search and planning, providing good strategy for tasks that are inherently search-based problems, such as games and GPS searching. In the meantime, machine learning, arguably the hottest subfield of AI, embraces data-driven methodology with great success in a wide range of applications such as computer vision and speech recognition. As a new trend, the applications of both learning and search have shifted toward mobile and embedded devices which entails not only scalability but also compactness of the models. Under this general paradigm, we propose a series of work to address the issues of scalability and compactness within machine learning and its applications on heuristic search. We first focus on the scalability issue of memory-based heuristic search which is recently ameliorated by Maximum Variance Unfolding (MVU), a manifold learning algorithm capable of learning state embeddings as effective heuristics to speed up A∗A^* search. Though achieving unprecedented online search performance with constraints on memory footprint, MVU is notoriously slow on offline training. To address this problem, we introduce Maximum Variance Correction (MVC), which finds large-scale feasible solutions to MVU by post-processing embeddings from any manifold learning algorithm. It increases the scale of MVU embeddings by several orders of magnitude and is naturally parallel. We further propose Goal-oriented Euclidean Heuristic (GOEH), a variant to MVU embeddings, which preferably optimizes the heuristics associated with goals in the embedding while maintaining their admissibility. We demonstrate unmatched reductions in search time across several non-trivial A∗A^* benchmark search problems. Through these work, we bridge the gap between the manifold learning literature and heuristic search which have been regarded as fundamentally different, leading to cross-fertilization for both fields. Deep learning has made a big splash in the machine learning community with its superior accuracy performance. However, it comes at a price of huge model size that might involves billions of parameters, which poses great challenges for its use on mobile and embedded devices. To achieve the compactness, we propose HashedNets, a general approach to compressing neural network models leveraging feature hashing. At its core, HashedNets randomly group parameters using a low-cost hash function, and share parameter value within the group. According to our empirical results, a neural network could be 32x smaller with little drop in accuracy performance. We further introduce Frequency-Sensitive Hashed Nets (FreshNets) to extend this hashing technique to convolutional neural network by compressing parameters in the frequency domain. Compared with many AI applications, neural networks seem not graining as much popularity as it should be in traditional data mining tasks. For these tasks, categorical features need to be first converted to numerical representation in advance in order for neural networks to process them. We show that a na\ {i}ve use of the classic one-hot encoding may result in gigantic weight matrices and therefore lead to prohibitively expensive memory cost in neural networks. Inspired by word embedding, we advocate a compellingly simple, yet effective neural network architecture with category embedding. It is capable of directly handling both numerical and categorical features as well as providing visual insights on feature similarities. At the end, we conduct comprehensive empirical evaluation which showcases the efficacy and practicality of our approach, and provides surprisingly good visualization and clustering for categorical features

    Manifold Learning in Atomistic Simulations: A Conceptual Review

    Full text link
    Analyzing large volumes of high-dimensional data requires dimensionality reduction: finding meaningful low-dimensional structures hidden in their high-dimensional observations. Such practice is needed in atomistic simulations of complex systems where even thousands of degrees of freedom are sampled. An abundance of such data makes gaining insight into a specific physical problem strenuous. Our primary aim in this review is to focus on unsupervised machine learning methods that can be used on simulation data to find a low-dimensional manifold providing a collective and informative characterization of the studied process. Such manifolds can be used for sampling long-timescale processes and free-energy estimation. We describe methods that can work on datasets from standard and enhanced sampling atomistic simulations. Unlike recent reviews on manifold learning for atomistic simulations, we consider only methods that construct low-dimensional manifolds based on Markov transition probabilities between high-dimensional samples. We discuss these techniques from a conceptual point of view, including their underlying theoretical frameworks and possible limitations

    Signal processing and analytics of multimodal biosignals

    Get PDF
    Ph. D. ThesisBiosignals have been extensively studied by researchers for applications in diagnosis, therapy, and monitoring. As these signals are complex, they have to be crafted as features for machine learning to work. This begs the question of how to extract features that are relevant and yet invariant to uncontrolled extraneous factors. In the last decade or so, deep learning has been used to extract features from the raw signals automatically. Furthermore, with the proliferation of sensors, more raw signals are now available, making it possible to use multi-view learning to improve on the predictive performance of deep learning. The purpose of this work is to develop an effective deep learning model of the biosignals and make use of the multi-view information in the sequential data. This thesis describes two proposed methods, namely: (1) The use of a deep temporal convolution network to provide the temporal context of the signals to the deeper layers of a deep belief net. (2) The use of multi-view spectral embedding to blend the complementary data in an ensemble. This work uses several annotated biosignal data sets that are available in the open domain. They are non-stationary, noisy and non-linear signals. Using these signals in their raw form without feature engineering will yield poor results with the traditional machine learning techniques. By passing abstractions that are more useful through the deep belief net and blending the complementary data in an ensemble, there will be improvement in performance in terms of accuracy and variance, as shown by the results of 10-fold validations.Nanyang Polytechni

    Neural network based country wise risk prediction of COVID-19

    Get PDF
    The recent worldwide outbreak of the novel coronavirus (COVID-19) has opened up new challenges to the research community. Artificial intelligence (AI) driven methods can be useful to predict the parameters, risks, and effects of such an epidemic. Such predictions can be helpful to control and prevent the spread of such diseases. The main challenges of applying AI is the small volume of data and the uncertain nature. Here, we propose a shallow long short-term memory (LSTM) based neural network to predict the risk category of a country. We have used a Bayesian optimization framework to optimize and automatically design country-specific networks. The results show that the proposed pipeline outperforms state-of-the-art methods for data of 180 countries and can be a useful tool for such risk categorization. We have also experimented with the trend data and weather data combined for the prediction. The outcome shows that the weather does not have a significant role. The tool can be used to predict long-duration outbreak of such an epidemic such that we can take preventive steps earlie

    Contribution to Graph-based Manifold Learning with Application to Image Categorization.

    Get PDF
    122 pLos algoritmos de aprendizaje de variedades basados en grafos (Graph,based manifold) son técnicas que han demostrado ser potentes herramientas para la extracción de características y la reducción de la dimensionalidad en los campos de reconomiento de patrones, visión por computador y aprendizaje automático. Estos algoritmos utilizan información basada en las similitudes de pares de muestras y del grafo ponderado resultante para revelar la estructura geométrica intrínseca de la variedad

    Towards On-line Domain-Independent Big Data Learning: Novel Theories and Applications

    Get PDF
    Feature extraction is an extremely important pre-processing step to pattern recognition, and machine learning problems. This thesis highlights how one can best extract features from the data in an exhaustively online and purely adaptive manner. The solution to this problem is given for both labeled and unlabeled datasets, by presenting a number of novel on-line learning approaches. Specifically, the differential equation method for solving the generalized eigenvalue problem is used to derive a number of novel machine learning and feature extraction algorithms. The incremental eigen-solution method is used to derive a novel incremental extension of linear discriminant analysis (LDA). Further the proposed incremental version is combined with extreme learning machine (ELM) in which the ELM is used as a preprocessor before learning. In this first key contribution, the dynamic random expansion characteristic of ELM is combined with the proposed incremental LDA technique, and shown to offer a significant improvement in maximizing the discrimination between points in two different classes, while minimizing the distance within each class, in comparison with other standard state-of-the-art incremental and batch techniques. In the second contribution, the differential equation method for solving the generalized eigenvalue problem is used to derive a novel state-of-the-art purely incremental version of slow feature analysis (SLA) algorithm, termed the generalized eigenvalue based slow feature analysis (GENEIGSFA) technique. Further the time series expansion of echo state network (ESN) and radial basis functions (EBF) are used as a pre-processor before learning. In addition, the higher order derivatives are used as a smoothing constraint in the output signal. Finally, an online extension of the generalized eigenvalue problem, derived from James Stone’s criterion, is tested, evaluated and compared with the standard batch version of the slow feature analysis technique, to demonstrate its comparative effectiveness. In the third contribution, light-weight extensions of the statistical technique known as canonical correlation analysis (CCA) for both twinned and multiple data streams, are derived by using the same existing method of solving the generalized eigenvalue problem. Further the proposed method is enhanced by maximizing the covariance between data streams while simultaneously maximizing the rate of change of variances within each data stream. A recurrent set of connections used by ESN are used as a pre-processor between the inputs and the canonical projections in order to capture shared temporal information in two or more data streams. A solution to the problem of identifying a low dimensional manifold on a high dimensional dataspace is then presented in an incremental and adaptive manner. Finally, an online locally optimized extension of Laplacian Eigenmaps is derived termed the generalized incremental laplacian eigenmaps technique (GENILE). Apart from exploiting the benefit of the incremental nature of the proposed manifold based dimensionality reduction technique, most of the time the projections produced by this method are shown to produce a better classification accuracy in comparison with standard batch versions of these techniques - on both artificial and real datasets
    • …
    corecore