295 research outputs found

    A novel scheme to improve lifetime and real-time support for IEEE 802.15.4 based wireless personal area networks

    Get PDF
    IEEE 802.15.4 defines the working of physical and media access layers of a Low-Rate Wireless Personal Area Network (LR-WPAN). A LR-WPAN is a low cost, low power, and low data-rate network that offers reasonable lifetime and reliable data transfer within a limited range. However, it faces several challenges whilst dealing with applications that are having strict timeliness, energy, and bandwidth requirements. This paper proposes an efficient superframe structure for the MAC layer of IEEE 802.15.4 networks that intends to deal with these challenges by varying the functionalities of Guaranteed Time Slot (GTS) bits. Simulations of different GTS allocation techniques show that our enhanced scheme outperforms the original standard as well as previous techniques in terms of energy consumption, average delay, maximum GTS allocation and reliability

    A Study of IEEE 802.15.4 Security Framework for Wireless Body Area Network

    Full text link
    A Wireless Body Area Network (WBAN) is a collection of low-power and lightweight wireless sensor nodes that are used to monitor the human body functions and the surrounding environment. It supports a number of innovative and interesting applications, including ubiquitous healthcare and Consumer Electronics (CE) applications. Since WBAN nodes are used to collect sensitive (life-critical) information and may operate in hostile environments, they require strict security mechanisms to prevent malicious interaction with the system. In this paper, we first highlight major security requirements and Denial of Service (DoS) attacks in WBAN at Physical, Medium Access Control (MAC), Network, and Transport layers. Then we discuss the IEEE 802.15.4 security framework and identify the security vulnerabilities and major attacks in the context of WBAN. Different types of attacks on the Contention Access Period (CAP) and Contention Free Period (CFP) parts of the superframe are analyzed and discussed. It is observed that a smart attacker can successfully corrupt an increasing number of GTS slots in the CFP period and can considerably affect the Quality of Service (QoS) in WBAN (since most of the data is carried in CFP period). As we increase the number of smart attackers the corrupted GTS slots are eventually increased, which prevents the legitimate nodes to utilize the bandwidth efficiently. This means that the direct adaptation of IEEE 802.15.4 security framework for WBAN is not totally secure for certain WBAN applications. New solutions are required to integrate high level security in WBAN.Comment: 14 pages, 7 figures, 2 table

    IEEE 802.15.4 MAC Protocol Study and Improvement

    Get PDF
    IEEE 802.15.4 is a standard used for low rate personal area networks (PANs). It offers device level connectivity in applications with limited ower and relaxed throughput requirements. Devices with IEEE 802.15.4 technology can be used in many potential applications, such as home networking, industry/environments monitoring, healthcare equipments, etc, due to its extremely low power features. Although the superframe beacons play the key role in synchronizing channel access in IEEE 802.15.4, they are sources for energy inefficiency. This research focuses on exploring how to optimize the beacons, and designing novel schemes to distribute the information that are supposed to be delivered to a subset of PAN devices. In this work, an acknowledgement based scheme is proposed to reduce the energy consumption in the distribution of guaranteed time slot (GTS) descriptors. Based on the observation that the superframe beacon frame has global impact on all PAN devices, an energy-efficient channel reservation scheme is presented to deliver the information (GTS descriptors and pending addresses). In addition, the problem of channel underutilization is studied in the contention free period. To address the problem, a new GTS allocation scheme is proposed to improve the bandwidth utilization

    Efficient GTS Allocation Schemes for IEEE 802.15.4

    Get PDF
    IEEE 802.15.4 is a standard defined for wireless sensor network applications with limited power and relaxed throughput needs. The devices transmit data during two periods: Contention Access Period (CAP) by accessing the channel using CSMA/CA and Contention Free Period (CFP), which consists of Guaranteed Time Slots (GTS) allocated to individual devices by the network coordinator. The GTS is used by devices for cyclic data transmission and the coordinator can allocate GTS to a maximum of only seven devices. In this work, we have proposed two algorithms for an efficient GTS allocation. The first algorithm is focused on improving the bandwidth utilization of devices, while the second algorithm uses traffic arrival information of devices to allow sharing of GTS slots between more than seven devices. The proposed schemes were tested through simulations and the results show that the new GTS allocation schemes perform better than the original IEEE 802.15.4 standard

    IEEE 802.15.4: a Federating Communication Protocol for Time-Sensitive Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) have been attracting increasing interests for developing a new generation of embedded systems with great potential for many applications such as surveillance, environment monitoring, emergency medical response and home automation. However, the communication paradigms in WSNs differ from the ones attributed to traditional wireless networks, triggering the need for new communication protocols. In this context, the recently standardised IEEE 802.15.4 protocol presents some potentially interesting features for deployment in wireless sensor network applications, such as power-efficiency, timeliness guarantees and scalability. Nevertheless, when addressing WSN applications with (soft/hard) timing requirements some inherent paradoxes emerge, such as power-efficiency versus timeliness, triggering the need of engineering solutions for an efficient deployment of IEEE 802.15.4 in WSNs. In this technical report, we will explore the most relevant characteristics of the IEEE 802.15.4 protocol for wireless sensor networks and present the most important challenges regarding time-sensitive WSN applications. We also provide some timing performance and analysis of the IEEE 802.15.4 that unveil some directions for resolving the previously mentioned paradoxes

    MAC protocols for low-latency and energy-efficient WSN applications

    Get PDF
    Most of medium access control (MAC) protocols proposed for wireless sensor networks (WSN) are targeted only for single main objective, the energy efficiency. Other critical parameters such as low-latency, adaptivity to traffic conditions, scalability, system fairness, and bandwidth utilization are mostly overleaped or dealt as secondary objectives. The demand to address those issues increases with the growing interest in cheap, low-power, low- distance, and embedded WSNs. In this report, along with other vital parameters, we discuss suitability and limitations of different WSN MAC protocols for time critical and energy-efficient applications. As an example, we discuss the working of IEEE 802.15.4 in detail, explore its limitations, and derive efficient application-specific network parameter settings for time, energy, and bandwidth critical applications. Eventually, a new WSN MAC protocol Asynchronous Real-time Energy-efficient and Adaptive MAC (AREA-MAC) is proposed, which is intended to deal efficiently with time critical applications, and at the same time, to provide a better trade-off between other vital parameters, such as energy-efficiency, system fairness, throughput, scalability, and adaptivity to traffic conditions. On the other hand, two different optimization problems have been formulated using application-based traffic generating scenario to minimize network latency and maximize its lifetime

    Attacking and securing beacon-enabled 802.15.4 networks

    Get PDF
    The IEEE 802.15.4 standard has attracted timecritical applications in wireless sensor networks because of its beacon-enabled mode and guaranteed timeslots (GTSs). However, the GTS management scheme’s security mechanisms still leave the 802.15.4 medium access control vulnerable to attacks. Further, the existing techniques in the literature for securing 802.15.4 networks either focus on nonbeacon-enabled 802.15.4 networks or cannot defend against insider attacks for beacon-enabled 802.15.4 networks. In this paper, we illustrate this by demonstrating attacks on the availability and integrity of the beaconenabled 802.15.4 network. To confirm the validity of the attacks, we implement the attacks using Tmote Sky motes for wireless sensor nodes, where the malicious node is deployed as an inside attacker. We show that the malicious node can freely exploit information retrieved from the beacon frames to compromise the integrity and availability of the network. To defend against these attacks, we present BCN-Sec, a protocol that ensures the integrity of data and control frames in beacon-enabled 802.15.4 networks. We implement BCN-Sec, and show its efficacy during various attacks
    corecore