4,041 research outputs found

    Connectivity Compression for Irregular Quadrilateral Meshes

    Get PDF
    Applications that require Internet access to remote 3D datasets are often limited by the storage costs of 3D models. Several compression methods are available to address these limits for objects represented by triangle meshes. Many CAD and VRML models, however, are represented as quadrilateral meshes or mixed triangle/quadrilateral meshes, and these models may also require compression. We present an algorithm for encoding the connectivity of such quadrilateral meshes, and we demonstrate that by preserving and exploiting the original quad structure, our approach achieves encodings 30 - 80% smaller than an approach based on randomly splitting quads into triangles. We present both a code with a proven worst-case cost of 3 bits per vertex (or 2.75 bits per vertex for meshes without valence-two vertices) and entropy-coding results for typical meshes ranging from 0.3 to 0.9 bits per vertex, depending on the regularity of the mesh. Our method may be implemented by a rule for a particular splitting of quads into triangles and by using the compression and decompression algorithms introduced in [Rossignac99] and [Rossignac&Szymczak99]. We also present extensions to the algorithm to compress meshes with holes and handles and meshes containing triangles and other polygons as well as quads

    Enabling geometry-based 3-D tele-immersion with fast mesh compression and linear rateless coding

    Get PDF
    3-D tele-immersion (3DTI) enables participants in remote locations to share, in real time, an activity. It offers users interactive and immersive experiences, but it challenges current media-streaming solutions. Work in the past has mainly focused on the efficient delivery of image-based 3-D videos and on realistic rendering and reconstruction of geometry-based 3-D objects. The contribution of this paper is a real-time streaming component for 3DTI with dynamic reconstructed geometry. This component includes both a novel fast compression method and a rateless packet protection scheme specifically designed towards the requirements imposed by real time transmission of live-reconstructed mesh geometry. Tests on a large dataset show an encoding speed-up up to ten times at comparable compression ratio and quality, when compared with the high-end MPEG-4 SC3DMC mesh encoders. The implemented rateless code ensures complete packet loss protection of the triangle mesh object and a delivery delay within interactive bounds. Contrary to most linear fountain codes, the designed codec enables real-time progressive decoding allowing partial decoding each time a packet is received. This approach is compared with transmission over TCP in packet loss rates and latencies, typical in managed WAN and MAN networks, and heavily outperforms it in terms of end-to-end delay. The streaming component has been integrated into a larger 3DTI environment that includes state of the art 3-D reconstruction and rendering modules. This resulted in a prototype that can capture, compress transmit, and render triangle mesh geometry in real-time in realistic internet conditions as shown in experiments. Compared with alternative methods, lower interactive end-to-end delay and frame rates over three times higher are achieved

    Mesh compression: Theory and practice.

    Get PDF
    Three-dimensional meshes (3D meshes, for short) are fast becoming an emerging media type, used in a variety of application domains such as engineering design, manufacture, architecture, bio-informatics, medicine, entertainment, commerce, science, defense, etc. The volume of data of this media type that is being circulated on the internet is increasing very rapidly and is being used as frequently as other media types like text, audio (1D), images and video (2D). Hence, 3D meshes need good processing and visualization methods. Also, the sizes of these meshes are much greater than the other media types mentioned above and often exceeds the memory and bandwidth available for their storage and transmission. Compression schemes for such large 3D meshes have become a subject of intense study lately. Meshes are either made up of triangles or quadrilaterals. Meshes made up of only triangles are called triangle meshes and meshes made up of quadrilaterals are called quadrilateral meshes (quad meshes, for short). A mesh is described by specifying its geometry (vertex coordinates) and its connectivity (adjacencies of the triangles or quadrilaterals). Previous research on mesh compression has been mostly for triangle meshes. Quad meshes were traditionally handled by first triangulating them and then applying triangle mesh compression techniques. In order to avoid this additional triangulation step, a direct technique is proposed for compressing and decompressing the connectivity of quad meshes. This technique takes a quad mesh as input and encodes its connectivity as a sequence of opcodes which can be restored back to the quad mesh, using the decompression technique. A data structure called EdgeTable is introduced to aid in the traversal of a quad mesh during compression. Also, a technique based on constrained Delaunay triangulation for reconstructing the connectivity of a 2D mesh from its geometry and a minimum set of edges is proposed. Source: Masters Abstracts International, Volume: 44-03, page: 1393. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Ubiquitous Scalable Graphics: An End-to-End Framework using Wavelets

    Get PDF
    Advances in ubiquitous displays and wireless communications have fueled the emergence of exciting mobile graphics applications including 3D virtual product catalogs, 3D maps, security monitoring systems and mobile games. Current trends that use cameras to capture geometry, material reflectance and other graphics elements means that very high resolution inputs is accessible to render extremely photorealistic scenes. However, captured graphics content can be many gigabytes in size, and must be simplified before they can be used on small mobile devices, which have limited resources, such as memory, screen size and battery energy. Scaling and converting graphics content to a suitable rendering format involves running several software tools, and selecting the best resolution for target mobile device is often done by trial and error, which all takes time. Wireless errors can also affect transmitted content and aggressive compression is needed for low-bandwidth wireless networks. Most rendering algorithms are currently optimized for visual realism and speed, but are not resource or energy efficient on mobile device. This dissertation focuses on the improvement of rendering performance by reducing the impacts of these problems with UbiWave, an end-to-end Framework to enable real time mobile access to high resolution graphics using wavelets. The framework tackles the issues including simplification, transmission, and resource efficient rendering of graphics content on mobile device based on wavelets by utilizing 1) a Perceptual Error Metric (PoI) for automatically computing the best resolution of graphics content for a given mobile display to eliminate guesswork and save resources, 2) Unequal Error Protection (UEP) to improve the resilience to wireless errors, 3) an Energy-efficient Adaptive Real-time Rendering (EARR) heuristic to balance energy consumption, rendering speed and image quality and 4) an Energy-efficient Streaming Technique. The results facilitate a new class of mobile graphics application which can gracefully adapt the lowest acceptable rendering resolution to the wireless network conditions and the availability of resources and battery energy on mobile device adaptively

    Human perception-oriented segmentation for triangle meshes

    Get PDF
    A segmentação de malhas é um tópico importante de investigação em computação gráfica, em particular em modelação geométrica. Isto deve-se ao facto de as técnicas de segmentaçãodemalhasteremváriasaplicações,nomeadamentenaproduçãodefilmes, animaçãoporcomputador, realidadevirtual, compressãodemalhas, assimcomoemjogosdigitais. Emconcreto, asmalhastriangularessãoamplamenteusadasemaplicações interativas, visto que sua segmentação em partes significativas (também designada por segmentação significativa, segmentação perceptiva ou segmentação perceptualmente significativa ) é muitas vezes vista como uma forma de acelerar a interação com o utilizador ou a deteção de colisões entre esses objetos 3D definidos por uma malha, bem como animar uma ou mais partes significativas (por exemplo, a cabeça de uma personagem) de um dado objeto, independentemente das restantes partes. Acontece que não se conhece nenhuma técnica capaz de segmentar correctamente malhas arbitrárias −ainda que restritas aos domínios de formas livres e não-livres− em partes significativas. Algumas técnicas são mais adequadas para objetos de forma não-livre (por exemplo, peças mecânicas definidas geometricamente por quádricas), enquanto outras são mais talhadas para o domínio dos objectos de forma livre. Só na literatura recente surgem umas poucas técnicas que se aplicam a todo o universo de objetos de forma livre e não-livre. Pior ainda é o facto de que a maioria das técnicas de segmentação não serem totalmente automáticas, no sentido de que quase todas elas exigem algum tipo de pré-requisitos e assistência do utilizador. Resumindo, estes três desafios relacionados com a proximidade perceptual, generalidade e automação estão no cerne do trabalho descrito nesta tese. Para enfrentar estes desafios, esta tese introduz o primeiro algoritmo de segmentação baseada nos contornos ou fronteiras dos segmentos, cuja técnica se inspira nas técnicas de segmentação baseada em arestas, tão comuns em análise e processamento de imagem,porcontraposiçãoàstécnicasesegmentaçãobaseadaemregiões. Aideiaprincipal é a de encontrar em primeiro lugar a fronteira de cada região para, em seguida, identificar e agrupar todos os seus triângulos internos. As regiões da malha encontradas correspondem a saliências e reentrâncias, que não precisam de ser estritamente convexas, nem estritamente côncavas, respectivamente. Estas regiões, designadas regiões relaxadamenteconvexas(ousaliências)eregiõesrelaxadamentecôncavas(oureentrâncias), produzem segmentações que são menos sensíveis ao ruído e, ao mesmo tempo, são mais intuitivas do ponto de vista da perceção humana; por isso, é designada por segmentação orientada à perceção humana (ou, human perception- oriented (HPO), do inglês). Além disso, e ao contrário do atual estado-da-arte da segmentação de malhas, a existência destas regiões relaxadas torna o algoritmo capaz de segmentar de maneira bastante plausível tanto objectos de forma não-livre como objectos de forma livre. Nesta tese, enfrentou-se também um quarto desafio, que está relacionado com a fusão de segmentação e multi-resolução de malhas. Em boa verdade, já existe na literatura uma variedade grande de técnicas de segmentação, bem como um número significativo de técnicas de multi-resolução, para malhas triangulares. No entanto, não é assim tão comum encontrar estruturas de dados e algoritmos que façam a fusão ou a simbiose destes dois conceitos, multi-resolução e segmentação, num único esquema multi-resolução que sirva os propósitos das aplicações que lidam com malhas simples e segmentadas, sendo que neste contexto se entende que uma malha simples é uma malha com um único segmento. Sendo assim, nesta tese descreve-se um novo esquema (entenda-seestruturasdedadosealgoritmos)demulti-resoluçãoesegmentação,designado por extended Ghost Cell (xGC). Este esquema preserva a forma das malhas, tanto em termos globais como locais, ou seja, os segmentos da malha e as suas fronteiras, bem como os seus vincos e ápices são preservados, não importa o nível de resolução que usamos durante a/o simplificação/refinamento da malha. Além disso, ao contrário de outros esquemas de segmentação, tornou-se possível ter segmentos adjacentes com dois ou mais níveis de resolução de diferença. Isto é particularmente útil em animação por computador, compressão e transmissão de malhas, operações de modelação geométrica, visualização científica e computação gráfica. Em suma, esta tese apresenta um esquema genérico, automático, e orientado à percepção humana, que torna possível a simbiose dos conceitos de segmentação e multiresolução de malhas trianguladas que sejam representativas de objectos 3D.The mesh segmentation is an important topic in computer graphics, in particular in geometric computing. This is so because mesh segmentation techniques find many applications in movies, computer animation, virtual reality, mesh compression, and games. Infact, trianglemeshesarewidelyusedininteractiveapplications, sothattheir segmentation in meaningful parts (i.e., human-perceptually segmentation, perceptive segmentationormeaningfulsegmentation)isoftenseenasawayofspeedinguptheuser interaction, detecting collisions between these mesh-covered objects in a 3D scene, as well as animating one or more meaningful parts (e.g., the head of a humanoid) independently of the other parts of a given object. It happens that there is no known technique capable of correctly segmenting any mesh into meaningful parts. Some techniques are more adequate for non-freeform objects (e.g., quadricmechanicalparts), whileothersperformbetterinthedomainoffreeform objects. Only recently, some techniques have been developed for the entire universe of objects and shapes. Even worse it is the fact that most segmentation techniques are not entirely automated in the sense that almost all techniques require some sort of pre-requisites and user assistance. Summing up, these three challenges related to perceptual proximity, generality and automation are at the core of the work described in this thesis. In order to face these challenges, we have developed the first contour-based mesh segmentation algorithm that we may find in the literature, which is inspired in the edgebased segmentation techniques used in image analysis, as opposite to region-based segmentation techniques. Its leading idea is to firstly find the contour of each region, and then to identify and collect all of its inner triangles. The encountered mesh regions correspond to ups and downs, which do not need to be strictly convex nor strictly concave, respectively. These regions, called relaxedly convex regions (or saliences) and relaxedly concave regions (or recesses), produce segmentations that are less-sensitive to noise and, at the same time, are more intuitive from the human point of view; hence it is called human perception- oriented (HPO) segmentation. Besides, and unlike the current state-of-the-art in mesh segmentation, the existence of these relaxed regions makes the algorithm suited to both non-freeform and freeform objects. In this thesis, we have also tackled a fourth challenge, which is related with the fusion of mesh segmentation and multi-resolution. Truly speaking, a plethora of segmentation techniques, as well as a number of multiresolution techniques, for triangle meshes already exist in the literature. However, it is not so common to find algorithms and data structures that fuse these two concepts, multiresolution and segmentation, into a symbiotic multi-resolution scheme for both plain and segmented meshes, in which a plainmeshisunderstoodasameshwithasinglesegment. So, weintroducesuchanovel multiresolution segmentation scheme, called extended Ghost Cell (xGC) scheme. This scheme preserves the shape of the meshes in both global and local terms, i.e., mesh segments and their boundaries, as well as creases and apices are preserved, no matter the level of resolution we use for simplification/refinement of the mesh. Moreover, unlike other segmentation schemes, it was made possible to have adjacent segments with two or more resolution levels of difference. This is particularly useful in computer animation, mesh compression and transmission, geometric computing, scientific visualization, and computer graphics. In short, this thesis presents a fully automatic, general, and human perception-oriented scheme that symbiotically integrates the concepts of mesh segmentation and multiresolution

    From Capture to Display: A Survey on Volumetric Video

    Full text link
    Volumetric video, which offers immersive viewing experiences, is gaining increasing prominence. With its six degrees of freedom, it provides viewers with greater immersion and interactivity compared to traditional videos. Despite their potential, volumetric video services poses significant challenges. This survey conducts a comprehensive review of the existing literature on volumetric video. We firstly provide a general framework of volumetric video services, followed by a discussion on prerequisites for volumetric video, encompassing representations, open datasets, and quality assessment metrics. Then we delve into the current methodologies for each stage of the volumetric video service pipeline, detailing capturing, compression, transmission, rendering, and display techniques. Lastly, we explore various applications enabled by this pioneering technology and we present an array of research challenges and opportunities in the domain of volumetric video services. This survey aspires to provide a holistic understanding of this burgeoning field and shed light on potential future research trajectories, aiming to bring the vision of volumetric video to fruition.Comment: Submitte

    Methods for Real-time Visualization and Interaction with Landforms

    Get PDF
    This thesis presents methods to enrich data modeling and analysis in the geoscience domain with a particular focus on geomorphological applications. First, a short overview of the relevant characteristics of the used remote sensing data and basics of its processing and visualization are provided. Then, two new methods for the visualization of vector-based maps on digital elevation models (DEMs) are presented. The first method uses a texture-based approach that generates a texture from the input maps at runtime taking into account the current viewpoint. In contrast to that, the second method utilizes the stencil buffer to create a mask in image space that is then used to render the map on top of the DEM. A particular challenge in this context is posed by the view-dependent level-of-detail representation of the terrain geometry. After suitable visualization methods for vector-based maps have been investigated, two landform mapping tools for the interactive generation of such maps are presented. The user can carry out the mapping directly on the textured digital elevation model and thus benefit from the 3D visualization of the relief. Additionally, semi-automatic image segmentation techniques are applied in order to reduce the amount of user interaction required and thus make the mapping process more efficient and convenient. The challenge in the adaption of the methods lies in the transfer of the algorithms to the quadtree representation of the data and in the application of out-of-core and hierarchical methods to ensure interactive performance. Although high-resolution remote sensing data are often available today, their effective resolution at steep slopes is rather low due to the oblique acquisition angle. For this reason, remote sensing data are suitable to only a limited extent for visualization as well as landform mapping purposes. To provide an easy way to supply additional imagery, an algorithm for registering uncalibrated photos to a textured digital elevation model is presented. A particular challenge in registering the images is posed by large variations in the photos concerning resolution, lighting conditions, seasonal changes, etc. The registered photos can be used to increase the visual quality of the textured DEM, in particular at steep slopes. To this end, a method is presented that combines several georegistered photos to textures for the DEM. The difficulty in this compositing process is to create a consistent appearance and avoid visible seams between the photos. In addition to that, the photos also provide valuable means to improve landform mapping. To this end, an extension of the landform mapping methods is presented that allows the utilization of the registered photos during mapping. This way, a detailed and exact mapping becomes feasible even at steep slopes

    Space Carving multi-view video plus depth sequences for representation and transmission of 3DTV and FTV contents

    Get PDF
    La vidéo 3D a suscité un intérêt croissant durant ces dernières années. Grâce au développement récent des écrans stéréoscopiques et auto-stéréoscopiques, la vidéo 3D fournit une sensation réaliste de profondeur à l'utilisateur et une navigation virtuelle autour de la scène observée. Cependant de nombreux défis techniques existent encore. Ces défis peuvent être liés à l'acquisition de la scène et à sa représentation d'une part ou à la transmission des données d'autre part. Dans le contexte de la représentation de scènes naturelles, de nombreux efforts ont été fournis afin de surmonter ces difficultés. Les méthodes proposées dans la littérature peuvent être basées image, géométrie ou faire appel à des représentations combinant image et géométrie. L'approche adoptée dans cette thèse consiste en une méthode hybride s'appuyant sur l'utilisation des séquences multi-vues plus profondeur MVD (Multi-view Video plus Depth) afin de conserver le photo-réalisme de la scène observée, combinée avec un modèle géométrique, à base de maillage triangulaire, renforçant ainsi la compacité de la représentation. Nous supposons que les cartes de profondeur des données MVD fournies sont fiables et que les caméras utilisées durant l'acquisition sont calibrées, les paramètres caméras sont donc connus, mais les images correspondantes ne sont pas nécessairement rectifiées. Nous considérerons ainsi le cas général où les caméras peuvent être parallèles ou convergentes. Les contributions de cette thèse sont les suivantes. D'abord, un schéma volumétrique dédié à la fusion des cartes de profondeur en une surface maillée est proposé. Ensuite, un nouveau schéma de plaquage de texture multi-vues est proposé. Finalement, nous abordons à l'issue ce ces deux étapes de modélisation, la transmission proprement dite et comparons les performances de notre schéma de modélisation avec un schéma basé sur le standard MPEG-MVC, état de l'art dans la compression de vidéos multi-vues.3D videos have witnessed a growing interest in the last few years. Due to the recent development ofstereoscopic and auto-stereoscopic displays, 3D videos provide a realistic depth perception to the user and allows a virtual navigation around the scene. Nevertheless, several technical challenges are still remaining. Such challenges are either related to scene acquisition and representation on the one hand or to data transmission on the other hand. In the context of natural scene representation, research activities have been strengthened worldwide in order to handle these issues. The proposed methods for scene representation can be image-based, geometry based or methods combining both image and geometry. In this thesis, we take advantage of image based representations, thanks to the use of Multi-view Video plus Depth representation, in order to preserve the photorealism of the observed scene, and geometric based representations in order to enforce the compactness ofthe proposed scene representation. We assume the provided depth maps to be reliable.Besides, the considered cameras are calibrated so that the cameras parameters are known but thecorresponding images are not necessarily rectified. We consider, therefore, the general framework where cameras can be either convergent or parallel. The contributions of this thesis are the following. First, a new volumetric framework is proposed in order to mergethe input depth maps into a single and compact surface mesh. Second, a new algorithm for multi-texturing the surface mesh is proposed. Finally, we address the transmission issue and compare the performance of the proposed modeling scheme with the current standard MPEG-MVC, that is the state of the art of multi-view video compression.RENNES-INSA (352382210) / SudocSudocFranceF
    • …
    corecore