3,723 research outputs found

    Mapping and Scheduling of Directed Acyclic Graphs on An FPFA Tile

    Get PDF
    An architecture for a hand-held multimedia device requires components that are energy-efficient, flexible, and provide high performance. In the CHAMELEON [4] project we develop a coarse grained reconfigurable device for DSP-like algorithms, the so-called Field Programmable Function Array (FPFA). The FPFA devices are reminiscent to FPGAs, but with a matrix of Processing Parts (PP) instead of CLBs. The design of the FPFA focuses on: (1) Keeping each PP small to maximize the number of PPs that can fit on a chip; (2) providing sufficient flexibility; (3) Low energy consumption; (4) Exploiting the maximum amount of parallelism; (5) A strong support tool for FPFA-based applications. The challenge in providing compiler support for the FPFA-based design stems from the flexibility of the FPFA structure. If we do not use the characteristics of the FPFA structure properly, the advantages of an FPFA may become its disadvantages. The GECKO1project focuses on this problem. In this paper, we present a mapping and scheduling scheme for applications running on one FPFA tile. Applications are written in C and C code is translated to a Directed Acyclic Graphs (DAG) [4]. This scheme can map a DAG directly onto the reconfigurable PPs of an FPFA tile. It tries to achieve low power consumption by exploiting locality of reference and high performance by exploiting maximum parallelism

    Improving the scalability of parallel N-body applications with an event driven constraint based execution model

    Full text link
    The scalability and efficiency of graph applications are significantly constrained by conventional systems and their supporting programming models. Technology trends like multicore, manycore, and heterogeneous system architectures are introducing further challenges and possibilities for emerging application domains such as graph applications. This paper explores the space of effective parallel execution of ephemeral graphs that are dynamically generated using the Barnes-Hut algorithm to exemplify dynamic workloads. The workloads are expressed using the semantics of an Exascale computing execution model called ParalleX. For comparison, results using conventional execution model semantics are also presented. We find improved load balancing during runtime and automatic parallelism discovery improving efficiency using the advanced semantics for Exascale computing.Comment: 11 figure

    Coarse-grained reconfigurable array architectures

    Get PDF
    Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code

    High level synthesis of RDF queries for graph analytics

    Get PDF
    In this paper we present a set of techniques that enable the synthesis of efficient custom accelerators for memory intensive, irregular applications. To address the challenges of irregular applications (large memory footprint, unpredictable fine-grained data accesses, and high synchronization intensity), and exploit their opportunities (thread level parallelism, memory level parallelism), we propose a novel accelerator design that employs an adaptive and Distributed Controller (DC) architecture, and a Memory Interface Controller (MIC) that supports concurrent and atomic memory operations on a multi-ported/multi-banked shared memory. Among the multitude of algorithms that may benefit from our solution, we focus on the acceleration of graph analytics applications and, in particular, on the synthesis of SPARQL queries on Resource Description Framework (RDF) databases. We achieve this objective by incorporating the synthesis techniques into Bambu, an Open Source high-level synthesis tools, and interfacing it with GEMS, the Graph database Engine for Multithreaded Systems. The GEMS' front-end generates optimized C implementations of the input queries, modeled as graph pattern matching algorithms, which are then automatically synthesized by Bambu. We validate our approach by synthesizing several SPARQL queries from the Lehigh University Benchmark (LUBM)

    Manticore: Hardware-Accelerated RTL Simulation with Static Bulk-Synchronous Parallelism

    Full text link
    The demise of Moore's Law and Dennard Scaling has revived interest in specialized computer architectures and accelerators. Verification and testing of this hardware heavily uses cycle-accurate simulation of register-transfer-level (RTL) designs. The best software RTL simulators can simulate designs at 1--1000~kHz, i.e., more than three orders of magnitude slower than hardware. Faster simulation can increase productivity by speeding design iterations and permitting more exhaustive exploration. One possibility is to use parallelism as RTL exposes considerable fine-grain concurrency. However, state-of-the-art RTL simulators generally perform best when single-threaded since modern processors cannot effectively exploit fine-grain parallelism. This work presents Manticore: a parallel computer designed to accelerate RTL simulation. Manticore uses a static bulk-synchronous parallel (BSP) execution model to eliminate runtime synchronization barriers among many simple processors. Manticore relies entirely on its compiler to schedule resources and communication. Because RTL code is practically free of long divergent execution paths, static scheduling is feasible. Communication and synchronization no longer incur runtime overhead, enabling efficient fine-grain parallelism. Moreover, static scheduling dramatically simplifies the physical implementation, significantly increasing the potential parallelism on a chip. Our 225-core FPGA prototype running at 475 MHz outperforms a state-of-the-art RTL simulator on an Intel Xeon processor running at \approx 3.3 GHz by up to 27.9×\times (geomean 5.3×\times) in nine Verilog benchmarks
    corecore