303 research outputs found

    Power management using photovoltaic cells for implantable devices

    Get PDF
    This paper presents a novel inductor-less switched capacitor (SC) DC-DC converter, which generates simultaneous dual-output voltages for implantable electronic devices. Present dual output converters are limited to fixed ratio gain, which degrade conversion efficiency when the input voltage changes. The proposed power converter offers both step-up and step-down conversion with 4-phase reconfigurable logic. With an input voltage of 1 V provided by photovoltaic (PV) cells, the proposed converter achieves step-up, step-down and synchronised voltage conversions in four gain modes. These are 1.5 V and 0.5 V for Normal mode, 2 V and 1 V for High mode, 2 V for Double Boost mode, as well as 3 V and 2 V for Super Boost mode with the ripple variation of 14-59 mV. The converter circuit has been simulated in standard 0.18 ฮผm CMOS technology and the results agree with state-of-the-art SC converters. However, our proposed monolithically integrated PV powered circuit achieves a conversion efficiency of 85.26% and provides extra flexibility in terms of gain, which is advantageous for future implantable applications that have a range of inputs. This research is therefore an important step in achieving truly autonomous implantable electronic devices

    Investigation of high bandwith biodevices for transcutaneous wireless telemetry

    Get PDF
    PhD ThesisBIODEVICE implants for telemetry are increasingly applied today in various areas applications. There are many examples such as; telemedicine, biotelemetry, health care, treatments for chronic diseases, epilepsy and blindness, all of which are using a wireless infrastructure environment. They use microelectronics technology for diagnostics or monitoring signals such as Electroencephalography or Electromyography. Conceptually the biodevices are defined as one of these technologies combined with transcutaneous wireless implant telemetry (TWIT). A wireless inductive coupling link is a common way for transferring the RF power and data, to communicate between a reader and a battery-less implant. Demand for higher data rate for the acquisition data returned from the body is increasing, and requires an efficient modulator to achieve high transfer rate and low power consumption. In such applications, Quadrature Phase Shift Keying (QPSK) modulation has advantages over other schemes, and double the symbol rate with respect to Binary Phase Shift Keying (BPSK) over the same spectrum band. In contrast to analogue modulators for generating QPSK signals, where the circuit complexity and power dissipation are unsuitable for medical purposes, a digital approach has advantages. Eventually a simple design can be achieved by mixing the hardware and software to minimize size and power consumption for implantable telemetry applications. This work proposes a new approach to digital modulator techniques, applied to transcutaneous implantable telemetry applications; inherently increasing the data rate and simplifying the hardware design. A novel design for a QPSK VHDL modulator to convey a high data rate is demonstrated. Essentially, CPLD/FPGA technology is used to generate hardware from VHDL code, and implement the device which performs the modulation. This improves the data transmission rate between the reader and biodevice. This type of modulator provides digital synthesis and the flexibility to reconfigure and upgrade with the two most often languages used being VHDL and Verilog (IEEE Standard) being used as hardware structure description languages. The second objective of this thesis is to improve the wireless coupling power (WCP). An efficient power amplifier was developed and a new algorithm developed for auto-power control design at the reader unit, which monitors the implant device and keeps the device working within the safety regulation power limits (SAR). The proposed system design has also been modeled and simulated with MATLAB/Simulink to validate the modulator and examine the performance of the proposed modulator in relation to its specifications.Higher Education Ministry in Liby

    A self-powered single-chip wireless sensor platform

    Get PDF
    Internet of thingsโ€ require a large array of low-cost sensor nodes, wireless connectivity, low power operation and system intelligence. On the other hand, wireless biomedical implants demand additional specifications including small form factor, a choice of wireless operating frequencies within the window for minimum tissue loss and bio-compatibility This thesis describes a low power and low-cost internet of things system suitable for implant applications that is implemented in its entirety on a single standard CMOS chip with an area smaller than 0.5 mm2. The chip includes integrated sensors, ultra-low-power transceivers, and additional interface and digital control electronics while it does not require a battery or complex packaging schemes. It is powered through electromagnetic (EM) radiation using its on-chip miniature antenna that also assists with transmit and receive functions. The chip can operate at a short distance (a few centimeters) from an EM source that also serves as its wireless link. Design methodology, system simulation and optimization and early measurement results are presented

    Fully Integrated Biochip Platforms for Advanced Healthcare

    Get PDF
    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications

    A Novel Power-Efficient Wireless Multi-channel Recording System for the Telemonitoring of Electroencephalography (EEG)

    Get PDF
    This research introduces the development of a novel EEG recording system that is modular, batteryless, and wireless (untethered) with the supporting theoretical foundation in wireless communications and related design elements and circuitry. Its modular construct overcomes the EEG scaling problem and makes it easier for reconfiguring the hardware design in terms of the number and placement of electrodes and type of standard EEG system contemplated for use. In this development, portability, lightweight, and applicability to other clinical applications that rely on EEG data are sought. Due to printer tolerance, the 3D printed cap consists of 61 electrode placements. This recording capacity can however extend from 21 (as in the international 10-20 systems) up to 61 EEG channels at sample rates ranging from 250 to 1000 Hz and the transfer of the raw EEG signal using a standard allocated frequency as a data carrier. The main objectives of this dissertation are to (1) eliminate the need for heavy mounted batteries, (2) overcome the requirement for bulky power systems, and (3) avoid the use of data cables to untether the EEG system from the subject for a more practical and less restrictive setting. Unpredictability and temporal variations of the EEG input make developing a battery-free and cable-free EEG reading device challenging. Professional high-quality and high-resolution analog front ends are required to capture non-stationary EEG signals at microvolt levels. The primary components of the proposed setup are the wireless power transmission unit, which consists of a power amplifier, highly efficient resonant-inductive link, rectification, regulation, and power management units, as well as the analog front end, which consists of an analog to digital converter, pre-amplification unit, filtering unit, host microprocessor, and the wireless communication unit. These must all be compatible with the rest of the system and must use the least amount of power possible while minimizing the presence of noise and the attenuation of the recorded signal A highly efficient resonant-inductive coupling link is developed to decrease power transmission dissipation. Magnetized materials were utilized to steer electromagnetic flux and decrease route and medium loss while transmitting the required energy with low dissipation. Signal pre-amplification is handled by the front-end active electrodes. Standard bio-amplifier design approaches are combined to accomplish this purpose, and a thorough investigation of the optimum ADC, microcontroller, and transceiver units has been carried out. We can minimize overall system weight and power consumption by employing battery-less and cable-free EEG readout system designs, consequently giving patients more comfort and freedom of movement. Similarly, the solutions are designed to match the performance of medical-grade equipment. The captured electrical impulses using the proposed setup can be stored for various uses, including classification, prediction, 3D source localization, and for monitoring and diagnosing different brain disorders. All the proposed designs and supporting mathematical derivations were validated through empirical and software-simulated experiments. Many of the proposed designs, including the 3D head cap, the wireless power transmission unit, and the pre-amplification unit, are already fabricated, and the schematic circuits and simulation results were based on Spice, Altium, and high-frequency structure simulator (HFSS) software. The fully integrated head cap to be fabricated would require embedding the active electrodes into the 3D headset and applying current technological advances to miniaturize some of the design elements developed in this dissertation

    Biomedical Engineering

    Get PDF
    Biomedical engineering is currently relatively wide scientific area which has been constantly bringing innovations with an objective to support and improve all areas of medicine such as therapy, diagnostics and rehabilitation. It holds a strong position also in natural and biological sciences. In the terms of application, biomedical engineering is present at almost all technical universities where some of them are targeted for the research and development in this area. The presented book brings chosen outputs and results of research and development tasks, often supported by important world or European framework programs or grant agencies. The knowledge and findings from the area of biomaterials, bioelectronics, bioinformatics, biomedical devices and tools or computer support in the processes of diagnostics and therapy are defined in a way that they bring both basic information to a reader and also specific outputs with a possible further use in research and development

    Four-Wire Interface ASIC for a Multi-Implant Link

    Get PDF
    This paper describes an on-chip interface for recovering power and providing full-duplex communication over an AC-coupled 4-wire lead between active implantable devices. The target application requires two modules to be implanted in the brain (cortex) and upper chest; connected via a subcutaneous lead. The brain implant consists of multiple identical โ€œoptrodesโ€ that facilitate a bidirectional neural interface (electrical recording and optical stimulation), and the chest implant contains the power source (battery) and processor module. The proposed interface is integrated within each optrode ASIC allowing full-duplex and fully-differential communication based on Manchester encoding. The system features a head-to-chest uplink data rate (up to 1.6 Mbps) that is higher than that of the chest-to-head downlink (100 kbps), which is superimposed on a power carrier. On-chip power management provides an unregulated 5-V dc supply with up to 2.5-mA output current for stimulation, and two regulated voltages (3.3 and 3 V) with 60-dB power supply rejection ratio for recording and logic circuits. The 4-wire ASIC has been implemented in a 0.35-ฮผm CMOS technology, occupying a 1.5-mm 2 silicon area, and consumes a quiescent current of 91.2 ฮผA. The system allows power transmission with measured efficiency of up to 66% from the chest to the brain implant. The downlink and uplink communication are successfully tested in a system with two optrodes and through a 4-wire implantable lead

    ์†Œํ˜•๋™๋ฌผ์˜ ๋‡Œ์‹ ๊ฒฝ ์ž๊ทน์„ ์œ„ํ•œ ์™„์ „ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€,2020. 2. ๊น€์„ฑ์ค€.In this study, a fully implantable neural stimulator that is designed to stimulate the brain in the small animal is described. Electrical stimulation of the small animal is applicable to pre-clinical study, and behavior study for neuroscience research, etc. Especially, behavior study of the freely moving animal is useful to observe the modulation of sensory and motor functions by the stimulation. It involves conditioning animal's movement response through directional neural stimulation on the region of interest. The main technique that enables such applications is the development of an implantable neural stimulator. Implantable neural stimulator is used to modulate the behavior of the animal, while it ensures the free movement of the animals. Therefore, stable operation in vivo and device size are important issues in the design of implantable neural stimulators. Conventional neural stimulators for brain stimulation of small animal are comprised of electrodes implanted in the brain and a pulse generation circuit mounted on the back of the animal. The electrical stimulation generated from the circuit is conveyed to the target region by the electrodes wire-connected with the circuit. The devices are powered by a large battery, and controlled by a microcontroller unit. While it represents a simple approach, it is subject to various potential risks including short operation time, infection at the wound, mechanical failure of the device, and animals being hindered to move naturally, etc. A neural stimulator that is miniaturized, fully implantable, low-powered, and capable of wireless communication is required. In this dissertation, a fully implantable stimulator with remote controllability, compact size, and minimal power consumption is suggested for freely moving animal application. The stimulator consists of modular units of surface-type and depth-type arrays for accessing target brain area, package for accommodating the stimulating electronics all of which are assembled after independent fabrication and implantation using customized flat cables and connectors. The electronics in the package contains ZigBee telemetry for low-power wireless communication, inductive link for recharging lithium battery, and an ASIC that generates biphasic pulse for neural stimulation. A dual-mode power-saving scheme with a duty cycling was applied to minimize the power consumption. All modules were packaged using liquid crystal polymer (LCP) to avoid any chemical reaction after implantation. To evaluate the fabricated stimulator, wireless operation test was conducted. Signal-to-Noise Ratio (SNR) of the ZigBee telemetry were measured, and its communication range and data streaming capacity were tested. The amount of power delivered during the charging session depending on the coil distance was measured. After the evaluation of the device functionality, the stimulator was implanted into rats to train the animals to turn to the left (or right) following a directional cue applied to the barrel cortex. Functionality of the device was also demonstrated in a three-dimensional maze structure, by guiding the rats to navigate better in the maze. Finally, several aspects of the fabricated device were discussed further.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์†Œํ˜• ๋™๋ฌผ์˜ ๋‘๋‡Œ๋ฅผ ์ž๊ทนํ•˜๊ธฐ ์œ„ํ•œ ์™„์ „ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๊ฐ€ ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ์†Œํ˜• ๋™๋ฌผ์˜ ์ „๊ธฐ์ž๊ทน์€ ์ „์ž„์ƒ ์—ฐ๊ตฌ, ์‹ ๊ฒฝ๊ณผํ•™ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ํ–‰๋™์—ฐ๊ตฌ ๋“ฑ์— ํ™œ์šฉ๋œ๋‹ค. ํŠนํžˆ, ์ž์œ ๋กญ๊ฒŒ ์›€์ง์ด๋Š” ๋™๋ฌผ์„ ๋Œ€์ƒ์œผ๋กœ ํ•œ ํ–‰๋™ ์—ฐ๊ตฌ๋Š” ์ž๊ทน์— ์˜ํ•œ ๊ฐ๊ฐ ๋ฐ ์šด๋™ ๊ธฐ๋Šฅ์˜ ์กฐ์ ˆ์„ ๊ด€์ฐฐํ•˜๋Š” ๋ฐ ์œ ์šฉํ•˜๊ฒŒ ํ™œ์šฉ๋œ๋‹ค. ํ–‰๋™ ์—ฐ๊ตฌ๋Š” ๋‘๋‡Œ์˜ ํŠน์ • ๊ด€์‹ฌ ์˜์—ญ์„ ์ง์ ‘์ ์œผ๋กœ ์ž๊ทนํ•˜์—ฌ ๋™๋ฌผ์˜ ํ–‰๋™๋ฐ˜์‘์„ ์กฐ๊ฑดํ™”ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ˆ˜ํ–‰๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์ ์šฉ์„ ๊ฐ€๋Šฅ์ผ€ ํ•˜๋Š” ํ•ต์‹ฌ๊ธฐ์ˆ ์€ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ์˜ ๊ฐœ๋ฐœ์ด๋‹ค. ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋Š” ๋™๋ฌผ์˜ ์›€์ง์ž„์„ ๋ฐฉํ•ดํ•˜์ง€ ์•Š์œผ๋ฉด์„œ๋„ ๊ทธ ํ–‰๋™์„ ์กฐ์ ˆํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋™๋ฌผ ๋‚ด์—์„œ์˜ ์•ˆ์ •์ ์ธ ๋™์ž‘๊ณผ ์žฅ์น˜์˜ ํฌ๊ธฐ๊ฐ€ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋ฅผ ์„ค๊ณ„ํ•จ์— ์žˆ์–ด ์ค‘์š”ํ•œ ๋ฌธ์ œ์ด๋‹ค. ๊ธฐ์กด์˜ ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋Š” ๋‘๋‡Œ์— ์ด์‹๋˜๋Š” ์ „๊ทน ๋ถ€๋ถ„๊ณผ, ๋™๋ฌผ์˜ ๋“ฑ ๋ถ€๋ถ„์— ์œ„์น˜ํ•œ ํšŒ๋กœ๋ถ€๋ถ„์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ํšŒ๋กœ์—์„œ ์ƒ์‚ฐ๋œ ์ „๊ธฐ์ž๊ทน์€ ํšŒ๋กœ์™€ ์ „์„ ์œผ๋กœ ์—ฐ๊ฒฐ๋œ ์ „๊ทน์„ ํ†ตํ•ด ๋ชฉํ‘œ ์ง€์ ์œผ๋กœ ์ „๋‹ฌ๋œ๋‹ค. ์žฅ์น˜๋Š” ๋ฐฐํ„ฐ๋ฆฌ์— ์˜ํ•ด ๊ตฌ๋™๋˜๋ฉฐ, ๋‚ด์žฅ๋œ ๋งˆ์ดํฌ๋กœ ์ปจํŠธ๋กค๋Ÿฌ์— ์˜ํ•ด ์ œ์–ด๋œ๋‹ค. ์ด๋Š” ์‰ฝ๊ณ  ๊ฐ„๋‹จํ•œ ์ ‘๊ทผ๋ฐฉ์‹์ด์ง€๋งŒ, ์งง์€ ๋™์ž‘์‹œ๊ฐ„, ์ด์‹๋ถ€์œ„์˜ ๊ฐ์—ผ์ด๋‚˜ ์žฅ์น˜์˜ ๊ธฐ๊ณ„์  ๊ฒฐํ•จ, ๊ทธ๋ฆฌ๊ณ  ๋™๋ฌผ์˜ ์ž์—ฐ์Šค๋Ÿฌ์šด ์›€์ง์ž„ ๋ฐฉํ•ด ๋“ฑ ์—ฌ๋Ÿฌ ๋ฌธ์ œ์ ์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์˜ ๊ฐœ์„ ์„ ์œ„ํ•ด ๋ฌด์„ ํ†ต์‹ ์ด ๊ฐ€๋Šฅํ•˜๊ณ , ์ €์ „๋ ฅ, ์†Œํ˜•ํ™”๋œ ์™„์ „ ์ด์‹ํ˜• ์‹ ๊ฒฝ์ž๊ทน๊ธฐ์˜ ์„ค๊ณ„๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž์œ ๋กญ๊ฒŒ ์›€์ง์ด๋Š” ๋™๋ฌผ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์›๊ฒฉ ์ œ์–ด๊ฐ€ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ํฌ๊ธฐ๊ฐ€ ์ž‘๊ณ , ์†Œ๋ชจ์ „๋ ฅ์ด ์ตœ์†Œํ™”๋œ ์™„์ „์ด์‹ํ˜• ์ž๊ทน๊ธฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์„ค๊ณ„๋œ ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋Š” ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ๋‘๋‡Œ ์˜์—ญ์— ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋Š” ํ‘œ๋ฉดํ˜• ์ „๊ทน๊ณผ ํƒ์นจํ˜• ์ „๊ทน, ๊ทธ๋ฆฌ๊ณ  ์ž๊ทน ํŽ„์Šค ์ƒ์„ฑ ํšŒ๋กœ๋ฅผ ํฌํ•จํ•˜๋Š” ํŒจํ‚ค์ง€ ๋“ฑ์˜ ๋ชจ๋“ˆ๋“ค๋กœ ๊ตฌ์„ฑ๋˜๋ฉฐ, ๊ฐ๊ฐ์˜ ๋ชจ๋“ˆ์€ ๋…๋ฆฝ์ ์œผ๋กœ ์ œ์ž‘๋˜์–ด ๋™๋ฌผ์— ์ด์‹๋œ ๋’ค ์ผ€์ด๋ธ”๊ณผ ์ปค๋„ฅํ„ฐ๋กœ ์—ฐ๊ฒฐ๋œ๋‹ค. ํŒจํ‚ค์ง€ ๋‚ด๋ถ€์˜ ํšŒ๋กœ๋Š” ์ €์ „๋ ฅ ๋ฌด์„ ํ†ต์‹ ์„ ์œ„ํ•œ ์ง€๊ทธ๋น„ ํŠธ๋žœ์‹œ๋ฒ„, ๋ฆฌํŠฌ ๋ฐฐํ„ฐ๋ฆฌ์˜ ์žฌ์ถฉ์ „์„ ์œ„ํ•œ ์ธ๋•ํ‹ฐ๋ธŒ ๋งํฌ, ๊ทธ๋ฆฌ๊ณ  ์‹ ๊ฒฝ์ž๊ทน์„ ์œ„ํ•œ ์ด์ƒ์„ฑ ์ž๊ทนํŒŒํ˜•์„ ์ƒ์„ฑํ•˜๋Š” ASIC์œผ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์ „๋ ฅ ์ ˆ๊ฐ์„ ์œ„ํ•ด ๋‘ ๊ฐœ์˜ ๋ชจ๋“œ๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉ๋ฅ ์„ ์กฐ์ ˆํ•˜๋Š” ๋ฐฉ์‹์ด ์žฅ์น˜์— ์ ์šฉ๋œ๋‹ค. ๋ชจ๋“  ๋ชจ๋“ˆ๋“ค์€ ์ด์‹ ํ›„์˜ ์ƒ๋ฌผํ•™์ , ํ™”ํ•™์  ์•ˆ์ •์„ฑ์„ ์œ„ํ•ด ์•ก์ • ํด๋ฆฌ๋จธ๋กœ ํŒจํ‚ค์ง•๋˜์—ˆ๋‹ค. ์ œ์ž‘๋œ ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋ฌด์„  ๋™์ž‘ ํ…Œ์ŠคํŠธ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์ง€๊ทธ๋น„ ํ†ต์‹ ์˜ ์‹ ํ˜ธ ๋Œ€ ์žก์Œ๋น„๊ฐ€ ์ธก์ •๋˜์—ˆ์œผ๋ฉฐ, ํ•ด๋‹น ํ†ต์‹ ์˜ ๋™์ž‘๊ฑฐ๋ฆฌ ๋ฐ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋ฆฌ๋ฐ ์„ฑ๋Šฅ์ด ๊ฒ€์‚ฌ๋˜์—ˆ๊ณ , ์žฅ์น˜์˜ ์ถฉ์ „์ด ์ˆ˜ํ–‰๋  ๋•Œ ์ฝ”์ผ๊ฐ„์˜ ๊ฑฐ๋ฆฌ์— ๋”ฐ๋ผ ์ „์†ก๋˜๋Š” ์ „๋ ฅ์˜ ํฌ๊ธฐ๊ฐ€ ์ธก์ •๋˜์—ˆ๋‹ค. ์žฅ์น˜์˜ ํ‰๊ฐ€ ์ดํ›„, ์‹ ๊ฒฝ์ž๊ทน๊ธฐ๋Š” ์ฅ์— ์ด์‹๋˜์—ˆ์œผ๋ฉฐ, ํ•ด๋‹น ๋™๋ฌผ์€ ์ด์‹๋œ ์žฅ์น˜๋ฅผ ์ด์šฉํ•ด ๋ฐฉํ–ฅ ์‹ ํ˜ธ์— ๋”ฐ๋ผ ์ขŒ์šฐ๋กœ ์ด๋™ํ•˜๋„๋ก ํ›ˆ๋ จ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, 3์ฐจ์› ๋ฏธ๋กœ ๊ตฌ์กฐ์—์„œ ์ฅ์˜ ์ด๋™๋ฐฉํ–ฅ์„ ์œ ๋„ํ•˜๋Š” ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์žฅ์น˜์˜ ๊ธฐ๋Šฅ์„ฑ์„ ์ถ”๊ฐ€์ ์œผ๋กœ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ œ์ž‘๋œ ์žฅ์น˜์˜ ํŠน์ง•์ด ์—ฌ๋Ÿฌ ์ธก๋ฉด์—์„œ ์‹ฌ์ธต์ ์œผ๋กœ ๋…ผ์˜๋˜์—ˆ๋‹ค.Chapter 1 : Introduction 1 1.1. Neural Interface 2 1.1.1. Concept 2 1.1.2. Major Approaches 3 1.2. Neural Stimulator for Animal Brain Stimulation 5 1.2.1. Concept 5 1.2.2. Neural Stimulator for Freely Moving Small Animal 7 1.3. Suggested Approaches 8 1.3.1. Wireless Communication 8 1.3.2. Power Management 9 1.3.2.1. Wireless Power Transmission 10 1.3.2.2. Energy Harvesting 11 1.3.3. Full implantation 14 1.3.3.1. Polymer Packaging 14 1.3.3.2. Modular Configuration 16 1.4. Objectives of This Dissertation 16 Chapter 2 : Methods 18 2.1. Overview 19 2.1.1. Circuit Description 20 2.1.1.1. Pulse Generator ASIC 21 2.1.1.2. ZigBee Transceiver 23 2.1.1.3. Inductive Link 24 2.1.1.4. Energy Harvester 25 2.1.1.5. Surrounding Circuitries 26 2.1.2. Software Description 27 2.2. Antenna Design 29 2.2.1. RF Antenna 30 2.2.1.1. Design of Monopole Antenna 31 2.2.1.2. FEM Simulation 31 2.2.2. Inductive Link 36 2.2.2.1. Design of Coil Antenna 36 2.2.2.2. FEM Simulation 38 2.3. Device Fabrication 41 2.3.1. Circuit Assembly 41 2.3.2. Packaging 42 2.3.3. Electrode, Feedthrough, Cable, and Connector 43 2.4. Evaluations 45 2.4.1. Wireless Operation Test 46 2.4.1.1. Signal-to-Noise Ratio (SNR) Measurement 46 2.4.1.2. Communication Range Test 47 2.4.1.3. Device Operation Monitoring Test 48 2.4.2. Wireless Power Transmission 49 2.4.3. Electrochemical Measurements In Vitro 50 2.4.4. Animal Testing In Vivo 52 Chapter 3 : Results 57 3.1. Fabricated System 58 3.2. Wireless Operation Test 59 3.2.1. Signal-to-Noise Ratio Measurement 59 3.2.2. Communication Range Test 61 3.2.3. Device Operation Monitoring Test 62 3.3. Wireless Power Transmission 64 3.4. Electrochemical Measurements In Vitro 65 3.5. Animal Testing In Vivo 67 Chapter 4 : Discussion 73 4.1. Comparison with Conventional Devices 74 4.2. Safety of Device Operation 76 4.2.1. Safe Electrical Stimulation 76 4.2.2. Safe Wireless Power Transmission 80 4.3. Potential Applications 84 4.4. Opportunities for Further Improvements 86 4.4.1. Weight and Size 86 4.4.2. Long-Term Reliability 93 Chapter 5 : Conclusion 96 Reference 98 Appendix - Liquid Crystal Polymer (LCP) -Based Spinal Cord Stimulator 107 ๊ตญ๋ฌธ ์ดˆ๋ก 138 ๊ฐ์‚ฌ์˜ ๊ธ€ 140Docto

    An efficient telemetry system for restoring sight

    Get PDF
    PhD ThesisThe human nervous system can be damaged as a result of disease or trauma, causing conditions such as Parkinsonโ€™s disease. Most people try pharmaceuticals as a primary method of treatment. However, drugs cannot restore some cases, such as visual disorder. Alternatively, this impairment can be treated with electronic neural prostheses. A retinal prosthesis is an example of that for restoring sight, but it is not efficient and only people with retinal pigmentosa benefit from it. In such treatments, stimulation of the nervous system can be achieved by electrical or optical means. In the latter case, the nerves need to be rendered light sensitive via genetic means (optogenetics). High radiance photonic devices are then required to deliver light to the target tissue. Such optical approaches hold the potential to be more effective while causing less harm to the brain tissue. As these devices are implanted in tissue, wireless means need to be used to communicate with them. For this, IEEE 802.15.6 or Bluetooth protocols at 2.4GHz are potentially compatible with most advanced electronic devices, and are also safe and secure. Also, wireless power delivery can operate the implanted device. In this thesis, a fully wireless and efficient visual cortical stimulator was designed to restore the sight of the blind. This system is likely to address 40% of the causes of blindness. In general, the system can be divided into two parts, hardware and software. Hardware parts include a wireless power transfer design, the communication device, power management, a processor and the control unit, and the 3D design for assembly. The software part contains the image simplification, image compression, data encoding, pulse modulation, and the control system. Real-time video streaming is processed and sent over Bluetooth, and data are received by the LPC4330 six layer implanted board. After retrieving the compressed data, the processed data are again sent to the implanted electrode/optrode to stimulate the brainโ€™s nerve cells

    Doctor of Philosophy

    Get PDF
    dissertationMicroelectromechanical systems (MEMS) resonators on Si have the potential to replace the discrete passive components in a power converter. The main intention of this dissertation is to present a ring-shaped aluminum nitride (AlN) piezoelectric microreson
    • โ€ฆ
    corecore