33 research outputs found

    A robust 2.4 GHz time-of-arrival based ranging system with sub-meter accuracy: feasibility study and realization of low power CMOS receiver

    Get PDF
    Draadloze sensornetwerken worden meer en meer aangewend om verschillende soorten informatie te verzamelen. De locatie, waar deze informatie verzameld is, is een belangerijke eigenschap en voor sommige toepassingen, zoals het volgen van personen of goederen, zelfs de meest belangrijke en mogelijkmakende factor. Om de positie van een sensor te bepalen, is een technologie nodig die de afstand tot een gekend referentiepunt schat. Door verschillende afstandsmetingen te combineren, is het mogelijk de absolute locatie van de node te berekenen

    Low-power CMOS front-ends for wireless personal area networks

    Get PDF
    The potential of implementing subthreshold radio frequency circuits in deep sub-micron CMOS technology was investigated for developing low-power front-ends for wireless personal area network (WPAN) applications. It was found that the higher transconductance to bias current ratio in weak inversion could be exploited in developing low-power wireless front-ends, if circuit techniques are employed to mitigate the higher device noise in subthreshold region. The first fully integrated subthreshold low noise amplifier was demonstrated in the GHz frequency range requiring only 260 μW of power consumption. Novel subthreshold variable gain stages and down-conversion mixers were developed. A 2.4 GHz receiver, consuming 540 μW of power, was implemented using a new subthreshold mixer by replacing the conventional active low noise amplifier by a series-resonant passive network that provides both input matching and voltage amplification. The first fully monolithic subthreshold CMOS receiver was also implemented with integrated subthreshold quadrature LO (Local Oscillator) chain for 2.4 GHz WPAN applications. Subthreshold operation, passive voltage amplification, and various low-power circuit techniques such as current reuse, stacking, and differential cross coupling were combined to lower the total power consumption to 2.6 mW. Extremely compact resistive feedback CMOS low noise amplifiers were presented as a cost-effective alternative to narrow band LNAs using high-Q inductors. Techniques to improve linearity and reduce power consumption were presented. The combination of high linearity, low noise figure, high broadband gain, extremely small die area and low power consumption made the proposed LNA architecture a compelling choice for many wireless applications.Ph.D.Committee Chair: Laskar, Joy; Committee Member: Chakraborty, Sudipto; Committee Member: Chang, Jae Joon; Committee Member: Divan, Deepakraj; Committee Member: Kornegay, Kevin; Committee Member: Tentzeris, Emmanoui

    Energy-Efficient Wireless Circuits and Systems for Internet of Things

    Full text link
    As the demand of ultra-low power (ULP) systems for internet of thing (IoT) applications has been increasing, large efforts on evolving a new computing class is actively ongoing. The evolution of the new computing class, however, faced challenges due to hard constraints on the RF systems. Significant efforts on reducing power of power-hungry wireless radios have been done. The ULP radios, however, are mostly not standard compliant which poses a challenge to wide spread adoption. Being compliant with the WiFi network protocol can maximize an ULP radio’s potential of utilization, however, this standard demands excessive power consumption of over 10mW, that is hardly compatible with in ULP systems even with heavy duty-cycling. Also, lots of efforts to minimize off-chip components in ULP IoT device have been done, however, still not enough for practical usage without a clean external reference, therefore, this limits scaling on cost and form-factor of the new computer class of IoT applications. This research is motivated by those challenges on the RF systems, and each work focuses on radio designs for IoT applications in various aspects. First, the research covers several endeavors for relieving energy constraints on RF systems by utilizing existing network protocols that eventually meets both low-active power, and widespread adoption. This includes novel approaches on 802.11 communication with articulate iterations on low-power RF systems. The research presents three prototypes as power-efficient WiFi wake-up receivers, which bridges the gap between industry standard radios and ULP IoT radios. The proposed WiFi wake-up receivers operate with low power consumption and remain compatible with the WiFi protocol by using back-channel communication. Back-channel communication embeds a signal into a WiFi compliant transmission changing the firmware in the access point, or more specifically just the data in the payload of the WiFi packet. With a specific sequence of data in the packet, the transmitter can output a signal that mimics a modulation that is more conducive for ULP receivers, such as OOK and FSK. In this work, low power mixer-first receivers, and the first fully integrated ultra-low voltage receiver are presented, that are compatible with WiFi through back-channel communication. Another main contribution of this work is in relieving the integration challenge of IoT devices by removing the need for external, or off-chip crystals and antennas. This enables a small form-factor on the order of mm3-scale, useful for medical research and ubiquitous sensing applications. A crystal-less small form factor fully integrated 60GHz transceiver with on-chip 12-channel frequency reference, and good peak gain dual-mode on-chip antenna is presented.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162975/1/jaeim_1.pd

    Radio Frequency and Millimeter Wave Circuit Component Design with SiGe BiCMOS Technology

    Get PDF
    The objective of this research is to study and leverage the unique properties and advantages of silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) integrated circuit technologies to better design radio frequency (RF) and millimeter wave (mm-wave) circuit components. With recent developments, the high yield and modest cost silicon-based semiconductor technologies have proven to be attractive and cost-effective alternatives to high-performance III-V technology platforms. Between SiGe bipolar complementary metal-oxide-semiconductor (BiCMOS) technology and advanced RF complementary metal-oxide-semiconductor (CMOS) technology, the fundamental device-level differences between SiGe HBTs and field-effect transistors (FETs) grant SiGe HBTs clear advantages as well as unique design concerns. The work presented in this dissertation identifies several advantages and challenges on design using SiGe HBTs and provides design examples that exploit and address these unique benefits and problems with circuit component designs using SiGe HBTs.Ph.D

    RF techniques for IEEE 802.15.4: circuit design and device modelling

    Get PDF
    The RF circuitry in the physical layer of any wireless communication node is arguably its most important part. The front-end radio is the hardware that enables communication by transmitting and receiving information. Without a robust and high performance front-end, all other higher layers of signal processing and data handling in a wireless network are irrelevant. This thesis investigates the radio circuitry of wireless-networked nodes, and introduces several proposals for improvement. As an emerging market, analysis starts by examining available and ratified network standards suitable for low power applications. After identifying the IEEE 802.15.4 standard (commercially known as ZigBee) as the one of choice, and analysing several front-end architectures on which its transceiver circuitry can be based, an application, the Tyre Pressure Monitoring System (TPMS) is selected to examine the capabilities of the standard and its most suitable architecture in satisfying the application’s requirements. From this compatibility analysis, the most significant shortcomings are identified as interference and power consumption. The work presented in this thesis focuses on the power consumption issues. A comparison of available high frequency transistor technologies concludes Silicon CMOS to be the most appropriate solution for the implementation of low cost and low power ZigBee transceivers. Since the output power requirement of ZigBee is relatively modest, it is possible to consider the design of a single amplifier block which can act as both a Low Noise Amplifier (LNA) in the receiver chain and a Power Amplifier (PA) on the transmitter side. This work shows that by employing a suitable design methodology, a single dual-function amplifier can be realised which meets the required performance specification. In this way, power consumption and chip area can both be reduced, leading to cost savings so vital to the widespread utilisation of the ZigBee standard. Given the importance of device nonlinearity in such a design, a new transistor model based on independent representation of each of the transistor’s nonlinear elements is developed with the aim of quantifying the individual contribution of each of the transistors nonlinear elements, to the total distortion. The methodology to the design of the dual functionality (LNA/PA) amplifier starts by considering various low noise amplifier architectures and comparing them in terms of the trade-off between noise (required for LNA operation) and linearity (important for PA operation), and then examining the behaviour of the selected architecture (the common-source common-gate cascode) at higher than usual input powers. Due to the need to meet the far apart performance requirements of both the LNA and PA, a unique amplifier design methodology is developed The design methodology is based on simultaneous graphical visualisation of the relationship between all relevant performance parameters and corresponding design parameters. A design example is then presented to demonstrate the effectiveness of the methodology and the quality of trade-offs it allows the designer to make. The simulated performance of the final amplifier satisfies both the requirements of ZigBee’s low noise and power amplification. At 2.4GHz, the amplifier is predicted to have 1.6dB Noise Figure (NF), 6dBm Input-referred 3rd-order Intercept Point (IIP3), and 1dB compression point of -3.5dBm. In low power operation, it is predicted to have 10dB gain, consuming only 8mW. At the higher input power of 0dBm, it is predicted to achieve 24% Power-Added Efficiency (PAE) with 8dB gain and 22mW power consumption. Finally, this thesis presents a set of future research proposals based on problems identified throughout its development

    Ultra Small Antenna and Low Power Receiver for Smart Dust Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks have the potential for profound impact on our daily lives. Smart Dust Wireless Sensor Networks (SDWSNs) are emerging members of the Wireless Sensor Network family with strict requirements on communication node sizes (1 cubic centimeter) and power consumption (< 2mW during short on-states). In addition, the large number of communication nodes needed in SDWSN require highly integrated solutions. This dissertation develops new design techniques for low-volume antennas and low-power receivers for SDWSN applications. In addition, it devises an antenna and low noise amplifier co-design methodology to increase the level of design integration, reduce receiver noise, and reduce the development cycle. This dissertation first establishes stringent principles for designing SDWSN electrically small antennas (ESAs). Based on these principles, a new ESA, the F-Inverted Compact Antenna (FICA), is designed at 916MHz. This FICA has a significant advantage in that it uses a small-size ground plane. The volume of this FICA (including the ground plane) is only 7% of other state-of-the-art ESAs, while its efficiency (48.53%) and gain (-1.38dBi) are comparable to antennas of much larger dimensions. A physics-based circuit model is developed for this FICA to assist system level design at the earliest stage, including optimization of the antenna performance. An antenna and low noise amplifier (LNA) co-design method is proposed and proven to be valid to design low power LNAs with the very low noise figure of only 1.5dB. To reduce receiver power consumption, this dissertation proposes a novel LNA active device and an input/ouput passive matching network optimization method. With this method, a power efficient high voltage gain cascode LNA was designed in a 0.13um CMOS process with only low quality factor inductors. This LNA has a 3.6dB noise figure, voltage gain of 24dB, input third intercept point (IIP3) of 3dBm, and power consumption of 1.5mW at 1.0V supply voltage. Its figure of merit, using the typical definition, is twice that of the best in the literature. A full low power receiver is developed with a sensitivity of -58dBm, chip area of 1.1mm2, and power consumption of 2.85mW

    HIGH PERFORMANCE CMOS WIDE-BAND RF FRONT-END WITH SUBTHRESHOLD OUT OF BAND SENSING

    Get PDF
    In future, the radar/satellite wireless communication devices must support multiple standards and should be designed in the form of system-on-chip (SoC) so that a significant reduction happen on cost, area, pins, and power etc. However, in such device, the design of a fully on-chip CMOS wideband receiver front-end that can process several radar/satellite signal simultaneously becomes a multifold complex problem. Further, the inherent high-power out-of-band (OB) blockers in radio spectrum will make the receiver more non-linear, even sometimes saturate the receiver. Therefore, the proper blocker rejection techniques need to be incorporated. The primary focus of this research work is the development of a CMOS high-performance low noise wideband receiver architecture with a subthreshold out of band sensing receiver. Further, the various reconfigurable mixer architectures are proposed for performance adaptability of a wideband receiver for incoming standards. Firstly, a high-performance low- noise bandwidthenhanced fully differential receiver is proposed. The receiver composed of a composite transistor pair noise canceled low noise amplifier (LNA), multi-gate-transistor (MGTR) trans-conductor amplifier, and passive switching quad followed by Tow Thomas bi-quad second order filter based tarns-impedance amplifier. An inductive degenerative technique with low-VT CMOS architecture in LNA helps to improve the bandwidth and noise figure of the receiver. The full receiver system is designed in UMC 65nm CMOS technology and measured. The packaged LNA provides a power gain 12dB (including buffer) with a 3dB bandwidth of 0.3G – 3G, noise figure of 1.8 dB having a power consumption of 18.75mW with an active area of 1.2mm*1mm. The measured receiver shows 37dB gain at 5MHz IF frequency with 1.85dB noise figure and IIP3 of +6dBm, occupies 2mm*1.2mm area with 44.5mW of power consumption. Secondly, a 3GHz-5GHz auxiliary subthreshold receiver is proposed to estimate the out of blocker power. As a redundant block in the system, the cost and power minimization of the auxiliary receiver are achieved via subthreshold circuit design techniques and implementing the design in higher technology node (180nm CMOS). The packaged auxiliary receiver gives a voltage gain of 20dB gain, the noise figure of 8.9dB noise figure, IIP3 of -10dBm and 2G-5GHz bandwidth with 3.02mW power consumption. As per the knowledge, the measured results of proposed main-high-performancereceiver and auxiliary-subthreshold-receiver are best in state of art design. Finally, the various viii reconfigurable mixers architectures are proposed to reconfigure the main-receiver performance according to the requirement of the selected communication standard. The down conversion mixers configurability are in the form of active/passive and Input (RF) and output (IF) bandwidth reconfigurability. All designs are simulated in 65nm CMOS technology. To validate the concept, the active/ passive reconfigurable mixer configuration is fabricated and measured. Measured result shows a conversion gain of 29.2 dB and 25.5 dB, noise figure of 7.7 dB and 10.2 dB, IIP3 of -11.9 dBm and 6.5 dBm in active and passive mode respectively. It consumes a power 9.24mW and 9.36mW in passive and active case with a bandwidth of 1 to 5.5 GHz and 0.5 to 5.1 GHz for active/passive case respectively
    corecore