4 research outputs found

    Exploring Adaptive Implementation of On-Chip Networks

    Get PDF
    As technology geometries have shrunk to the deep submicron regime, the communication delay and power consumption of global interconnections in high performance Multi- Processor Systems-on-Chip (MPSoCs) are becoming a major bottleneck. The Network-on- Chip (NoC) architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication issues such as performance limitations of long interconnects and integration of large number of Processing Elements (PEs) on a chip. The choice of routing protocol and NoC structure can have a significant impact on performance and power consumption in on-chip networks. In addition, building a high performance, area and energy efficient on-chip network for multicore architectures requires a novel on-chip router allowing a larger network to be integrated on a single die with reduced power consumption. On top of that, network interfaces are employed to decouple computation resources from communication resources, to provide the synchronization between them, and to achieve backward compatibility with existing IP cores. Three adaptive routing algorithms are presented as a part of this thesis. The first presented routing protocol is a congestion-aware adaptive routing algorithm for 2D mesh NoCs which does not support multicast (one-to-many) traffic while the other two protocols are adaptive routing models supporting both unicast (one-to-one) and multicast traffic. A streamlined on-chip router architecture is also presented for avoiding congested areas in 2D mesh NoCs via employing efficient input and output selection. The output selection utilizes an adaptive routing algorithm based on the congestion condition of neighboring routers while the input selection allows packets to be serviced from each input port according to its congestion level. Moreover, in order to increase memory parallelism and bring compatibility with existing IP cores in network-based multiprocessor architectures, adaptive network interface architectures are presented to use multiple SDRAMs which can be accessed simultaneously. In addition, a smart memory controller is integrated in the adaptive network interface to improve the memory utilization and reduce both memory and network latencies. Three Dimensional Integrated Circuits (3D ICs) have been emerging as a viable candidate to achieve better performance and package density as compared to traditional 2D ICs. In addition, combining the benefits of 3D IC and NoC schemes provides a significant performance gain for 3D architectures. In recent years, inter-layer communication across multiple stacked layers (vertical channel) has attracted a lot of interest. In this thesis, a novel adaptive pipeline bus structure is proposed for inter-layer communication to improve the performance by reducing the delay and complexity of traditional bus arbitration. In addition, two mesh-based topologies for 3D architectures are also introduced to mitigate the inter-layer footprint and power dissipation on each layer with a small performance penalty.Siirretty Doriast

    Adaptive Routing Approaches for Networked Many-Core Systems

    Get PDF
    Through advances in technology, System-on-Chip design is moving towards integrating tens to hundreds of intellectual property blocks into a single chip. In such a many-core system, on-chip communication becomes a performance bottleneck for high performance designs. Network-on-Chip (NoC) has emerged as a viable solution for the communication challenges in highly complex chips. The NoC architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication challenges such as wiring complexity, communication latency, and bandwidth. Furthermore, the combined benefits of 3D IC and NoC schemes provide the possibility of designing a high performance system in a limited chip area. The major advantages of 3D NoCs are the considerable reductions in average latency and power consumption. There are several factors degrading the performance of NoCs. In this thesis, we investigate three main performance-limiting factors: network congestion, faults, and the lack of efficient multicast support. We address these issues by the means of routing algorithms. Congestion of data packets may lead to increased network latency and power consumption. Thus, we propose three different approaches for alleviating such congestion in the network. The first approach is based on measuring the congestion information in different regions of the network, distributing the information over the network, and utilizing this information when making a routing decision. The second approach employs a learning method to dynamically find the less congested routes according to the underlying traffic. The third approach is based on a fuzzy-logic technique to perform better routing decisions when traffic information of different routes is available. Faults affect performance significantly, as then packets should take longer paths in order to be routed around the faults, which in turn increases congestion around the faulty regions. We propose four methods to tolerate faults at the link and switch level by using only the shortest paths as long as such path exists. The unique characteristic among these methods is the toleration of faults while also maintaining the performance of NoCs. To the best of our knowledge, these algorithms are the first approaches to bypassing faults prior to reaching them while avoiding unnecessary misrouting of packets. Current implementations of multicast communication result in a significant performance loss for unicast traffic. This is due to the fact that the routing rules of multicast packets limit the adaptivity of unicast packets. We present an approach in which both unicast and multicast packets can be efficiently routed within the network. While suggesting a more efficient multicast support, the proposed approach does not affect the performance of unicast routing at all. In addition, in order to reduce the overall path length of multicast packets, we present several partitioning methods along with their analytical models for latency measurement. This approach is discussed in the context of 3D mesh networks.Siirretty Doriast

    Routing and Wavelength Assignment for Multicast Communication in Optical Network-on-Chip

    Get PDF
    An Optical Network-on-Chip (ONoC) is an emerging chip-level optical interconnection technology to realise high-performance and power-efficient inter-core communication for many-core processors. Within the field, multicast communication is one of the most important inter-core communication forms. It is not only widely used in parallel computing applications in Chip Multi-Processors (CMPs), but also common in emerging areas such as neuromorphic computing. While many studies have been conducted on designing ONoC architectures and routing schemes to support multicast communication, most existing solutions adopt the methods that were initially proposed for electrical interconnects. These solutions can neither fully take advantage of optical communication nor address the special requirements of an ONoC. Moreover, most of them focus only on the optimisation of one multicast, which limits the practical applications because real systems often have to handle multiple multicasts requested from various applications. Hence, this thesis will address the design of a high-performance communication scheme for multiple multicasts by taking into account the unique characteristics and constraints of an ONoC. This thesis studies the problem from a network-level perspective. The design methodology is to optimally route all multicasts requested simultaneously from the applications in an ONoC, with the objective of efficiently utilising available wavelengths. The novelty is to adopt multicast-splitting strategies, where a multicast can be split into several sub-multicasts according to the distribution of multicast nodes, in order to reduce the conflicts of different multicasts. As routing and wavelength assignment problem is an NP-hard problem, heuristic approaches that use the multicast-splitting strategy are proposed in this thesis. Specifically, three routing and wavelength assignment schemes for multiple multicasts in an ONoC are proposed for different problem domains. Firstly, PRWAMM, a Path-based Routing and Wavelength Assignment for Multiple Multicasts in an ONoC, is proposed. Due to the low manufacture complexity requirement of an ONoC, e.g., no splitters, path-based routing is studied in PRWAMM. Two wavelength-assignment strategies for multiple multicasts under path-based routing are proposed. One is an intramulticast wavelength assignment, which assigns wavelength(s) for one multicast. The other is an inter-multicast wavelength assignment, which assigns wavelength(s) for different multicasts, according to the distributions of multicasts. Simulation results show that PRWAMM can reduce the average number of wavelengths by 15% compared to other path-based schemes. Secondly, RWADMM, a Routing and Wavelength Assignment scheme for Distribution-based Multiple Multicasts in a 2D ONoC, is proposed. Because path-based routing lacks flexibility, it cannot reduce the link conflicts effectively. Hence, RWADMM is designed, based on the distribution of different multicasts, which includes two algorithms. One is an optimal routing and wavelength assignment algorithm for special distributions of multicast nodes. The other is a heuristic routing and wavelength assignment algorithm for random distributions of multicast nodes. Simulation results show that RWADMM can reduce the number of wavelengths by 21.85% on average, compared to the state-of-the-art solutions in a 2D ONoC. Thirdly, CRRWAMM, a Cluster-based Routing and Reusable Wavelength Assignment scheme for Multiple Multicasts in a 3D ONoC, is proposed. Because of the different architectures with a 2D ONoC (e.g., the layout of nodes, optical routers), the methods designed for a 2D ONoC cannot be simply extended to a 3D ONoC. In CRRWAMM, the distribution of multicast nodes in a mesh-based 3D ONoC is analysed first. Then, routing theorems for special instances are derived. Based on the theorems, a general routing scheme, which includes a cluster-based routing method and a reusable wavelength assignment method, is proposed. Simulation results show that CRRWAMM can reduce the number of wavelengths by 33.2% on average, compared to other schemes in a 3D ONoC. Overall, the three routing and wavelength assignment schemes can achieve high-performance multicast communication for multiple multicasts of their problem domains in an ONoC. They all have the advantages of a low routing complexity, a low wavelength requirement, and good scalability, compared to their counterparts, respectively. These methods make an ONoC a flexible high-performance computing platform to execute various parallel applications with different multicast requirements. As future work, I will investigate the power consumption of various routing schemes for multicasts. Using a multicast-splitting strategy may increase power consumption since it needs different wavelengths to send packets to different destinations for one multicast, though the reduction of wavelengths used in the schemes can also potentially decrease overall power consumption. Therefore, how to achieve the best trade-off between the total number of wavelengths used and the number of sub-multicasts in order to reduce power consumption will be interesting future research

    An efficent dynamic multicast routing protocol for distributing traffic in NOCs

    No full text
    corecore