13 research outputs found

    pHealth 2021. Proc. of the 18th Internat. Conf. on Wearable Micro and Nano Technologies for Personalised Health, 8-10 November 2021, Genoa, Italy

    Get PDF
    Smart mobile systems – microsystems, smart textiles, smart implants, sensor-controlled medical devices – together with related body, local and wide-area networks up to cloud services, have become important enablers for telemedicine and the next generation of healthcare services. The multilateral benefits of pHealth technologies offer enormous potential for all stakeholder communities, not only in terms of improvements in medical quality and industrial competitiveness, but also for the management of healthcare costs and, last but not least, the improvement of patient experience. This book presents the proceedings of pHealth 2021, the 18th in a series of conferences on wearable micro and nano technologies for personalized health with personal health management systems, hosted by the University of Genoa, Italy, and held as an online event from 8 – 10 November 2021. The conference focused on digital health ecosystems in the transformation of healthcare towards personalized, participative, preventive, predictive precision medicine (5P medicine). The book contains 46 peer-reviewed papers (1 keynote, 5 invited papers, 33 full papers, and 7 poster papers). Subjects covered include the deployment of mobile technologies, micro-nano-bio smart systems, bio-data management and analytics, autonomous and intelligent systems, the Health Internet of Things (HIoT), as well as potential risks for security and privacy, and the motivation and empowerment of patients in care processes. Providing an overview of current advances in personalized health and health management, the book will be of interest to all those working in the field of healthcare today

    Automatic Sleep EEG Pattern Detection

    Get PDF
    Analýza mozkové aktivity je jednou z klícových vyšetrovacích metod v moderní spánkové medicíne a výzkumu.nalysis of recorded brain activity is one of the main investigation methods in modern sleep medicine and research

    Robust Deep Learning Frameworks for Acoustic Scene and Respiratory Sound Classification

    Get PDF
    Although research on Acoustic Scene Classification (ASC) is very close to, or even overshadowed by different popular research areas known as Automatic Speech Recognition (ASR), Speaker Recognition (SR) or Image Processing (IP), this field potentially opens up several distinct and meaningful application areas based on environment context detection. The challenges of ASC mainly come from different noise resources, various sounds in real-world environments, occurring as single sounds, continuous sounds or overlapping sounds. In comparison to speech, sound scenes are more challenging mainly due to their being unstructured in form and closely similar to noise in certain contexts. Although a wide range of publications have focused on ASC recently, they show task-specific ways that either explore certain aspects of an ASC system or are evaluated on limited acoustic scene datasets. Therefore, the aim of this thesis is to contribute to the development of a robust framework to be applied for ASC, evaluated on various recently published datasets, and to achieve competitive performance compared to the state-of-the-art systems. To do this, a baseline model is firstly introduced. Next, extensive experiments on the baseline are conducted to identify key factors affecting final classification accuracy. From the comprehensive analysis, a robust deep learning framework, namely the Encoder-Decoder structure, is proposed to address three main factors that directly affect an ASC system. These factors comprise low-level input features, high-level feature extraction methodologies, and architectures for final classification. Within the proposed framework, three spectrogram transformations, namely Constant Q Transform (CQT), gammatone filter (Gamma), and log-mel, are used to convert recorded audio signals into spectrogram representations that resemble two-dimensional images. These three spectrograms used are referred to as low-level input features. To extract high-level features from spectrograms, a novel Encoder architecture, based on Convolutional Neural Networks, is proposed. In terms of the Decoder, also referred as to the final classifier, various models such as Random Forest Classifier, Deep Neural Network and Mixture of Experts, are evaluated and structured to obtain the best performance. To further improve an ASC system's performance, a scheme of two-level hierarchical classification, replacing the role of Decoder classification recently mentioned, is proposed. This scheme is useful to transform an ASC task over all categories into multiple ASC sub-tasks, each spanning fewer categories, in a divide-and- conquer strategy. At the highest level of the proposed scheme, meta-categories of acoustic scene sounds showing similar characteristics are classified. Next, categories within each meta-category are classified at the second level. Furthermore, an analysis of loss functions applied to different classifiers is conducted. This analysis indicates that a combination of entropy loss and triplet loss is useful to enhance performance, especially with tasks that comprise fewer categories. Further exploring ASC in terms of potential application to the health services, this thesis also explores the 2017 Internal Conference on Biomedical Health Informatics (ICBHI) benchmark dataset of lung sounds. A deep-learning frame- work, based on our novel ASC approaches, is proposed to classify anomaly cycles and predict respiratory diseases. The results obtained from these experiments show exceptional performance. This highlights the potential applications of using advanced ASC frameworks for early detection of auditory signals. In this case, signs of respiratory diseases, which could potentially be highly useful in future in directing treatment and preventing their spread

    Design techniques for smart and energy-efficient wireless body sensor networks

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, leída el 26/10/2012Las redes inalámbricas de sensores corporales (en inglés: "wireless body sensor networks" o WBSNs) para monitorización, diagnóstico y detección de emergencias, están ganando popularidad y están llamadas a cambiar profundamente la asistencia sanitaria en los próximos años. El uso de estas redes permite una supervisión continua, contribuyendo a la prevención y el diagnóstico precoz de enfermedades, al tiempo que mejora la autonomía del paciente con respecto a otros sistemas de monitorización actuales. Valiéndose de esta tecnología, esta tesis propone el desarrollo de un sistema de monitorización de electrocardiograma (ECG), que no sólo muestre continuamente el ECG del paciente, sino que además lo analice en tiempo real y sea capaz de dar información sobre el estado del corazón a través de un dispositivo móvil. Esta información también puede ser enviada al personal médico en tiempo real. Si ocurre un evento peligroso, el sistema lo detectará automáticamente e informará de inmediato al paciente y al personal médico, posibilitando una rápida reacción en caso de emergencia. Para conseguir la implementación de dicho sistema, se desarrollan y optimizan distintos algoritmos de procesamiento de ECG en tiempo real, que incluyen filtrado, detección de puntos característicos y clasificación de arritmias. Esta tesis también aborda la mejora de la eficiencia energética de la red de sensores, cumpliendo con los requisitos de fidelidad y rendimiento de la aplicación. Para ello se proponen técnicas de diseño para reducir el consumo de energía, que permitan buscar un compromiso óptimo entre el tamaño de la batería y su tiempo de vida. Si el consumo de energía puede reducirse lo suficiente, sería posible desarrollar una red que funcione permanentemente. Por lo tanto, el muestreo, procesamiento, almacenamiento y transmisión inalámbrica tienen que hacerse de manera que se suministren todos los datos relevantes, pero con el menor consumo posible de energía, minimizando así el tamaño de la batería (que condiciona el tamaño total del nodo) y la frecuencia de recarga de la batería (otro factor clave para su usabilidad). Por lo tanto, para lograr una mejora en la eficiencia energética del sistema de monitorización y análisis de ECG propuesto en esta tesis, se estudian varias soluciones a nivel de control de acceso al medio y sistema operativo.Depto. de Arquitectura de Computadores y AutomáticaFac. de InformáticaTRUEunpu

    The Application of Computer Techniques to ECG Interpretation

    Get PDF
    This book presents some of the latest available information on automated ECG analysis written by many of the leading researchers in the field. It contains a historical introduction, an outline of the latest international standards for signal processing and communications and then an exciting variety of studies on electrophysiological modelling, ECG Imaging, artificial intelligence applied to resting and ambulatory ECGs, body surface mapping, big data in ECG based prediction, enhanced reliability of patient monitoring, and atrial abnormalities on the ECG. It provides an extremely valuable contribution to the field

    Women in Artificial intelligence (AI)

    Get PDF
    This Special Issue, entitled "Women in Artificial Intelligence" includes 17 papers from leading women scientists. The papers cover a broad scope of research areas within Artificial Intelligence, including machine learning, perception, reasoning or planning, among others. The papers have applications to relevant fields, such as human health, finance, or education. It is worth noting that the Issue includes three papers that deal with different aspects of gender bias in Artificial Intelligence. All the papers have a woman as the first author. We can proudly say that these women are from countries worldwide, such as France, Czech Republic, United Kingdom, Australia, Bangladesh, Yemen, Romania, India, Cuba, Bangladesh and Spain. In conclusion, apart from its intrinsic scientific value as a Special Issue, combining interesting research works, this Special Issue intends to increase the invisibility of women in AI, showing where they are, what they do, and how they contribute to developments in Artificial Intelligence from their different places, positions, research branches and application fields. We planned to issue this book on the on Ada Lovelace Day (11/10/2022), a date internationally dedicated to the first computer programmer, a woman who had to fight the gender difficulties of her times, in the XIX century. We also thank the publisher for making this possible, thus allowing for this book to become a part of the international activities dedicated to celebrating the value of women in ICT all over the world. With this book, we want to pay homage to all the women that contributed over the years to the field of AI

    Preface

    Get PDF

    Activity recognition in naturalistic environments using body-worn sensors

    Get PDF
    Phd ThesisThe research presented in this thesis investigates how deep learning and feature learning can address challenges that arise for activity recognition systems in naturalistic, ecologically valid surroundings such as the private home. One of the main aims of ubiquitous computing is the development of automated recognition systems for human activities and behaviour that are sufficiently robust to be deployed in realistic, in-the-wild environments. In most cases, the targeted application scenarios are people’s daily lives, where systems have to abide by practical usability and privacy constraints. We discuss how these constraints impact data collection and analysis and demonstrate how common approaches to the analysis of movement data effectively limit the practical use of activity recognition systems in every-day surroundings. In light of these issues we develop a novel approach to the representation and modelling of movement data based on a data-driven methodology that has applications in activity recognition, behaviour imaging, and skill assessment in ubiquitous computing. A number of case studies illustrate the suitability of the proposed methods and outline how study design can be adapted to maximise the benefit of these techniques, which show promising performance for clinical applications in particular.SiDE research hu
    corecore