92 research outputs found

    The Trackless Tram: Is it the Transit and City Shaping Catalyst we have been waiting for?

    Get PDF
    Recent innovations in transport technology are now providing mobility that is cheaper, autonomous, electric, and with improved ride quality. While much of the world’s attention has been on how this can be applied to cars, there have been rapid adoption of these and other technologies in High Speed Rail and Metro Rail systems that run between and across cities. This paper shows how such innovations have now been applied to create the next generation of urban transit system called a Trackless Tram. Trackless Trams are effectively the same as traditional light rail except they run on rubber tyres avoiding disruption from construction for Light Rail, but they retain the electric propulsion (with batteries) and have high ride quality due to rail-type bogies, stabilization technologies and precision tracking from the autonomous optical guidance systems—with infrastructure costs reduced to as low as one tenth of a Light Rail system. As with Light Rail, a Trackless Tram System provides a rapid transit option that can harness the fixed route assurance necessary to unlock new land value appreciation that can be leveraged to contribute to construction and running costs whilst creating urban regeneration. The paper considers the niche for Trackless Trams in cities along with its potential for city shaping through the creation of urban re-development along corridors. The paper suggests that the adoption of Trackless Tram Systems is likely to grow rapidly as a genuine alternative to car and bus systems, supplementing and extending the niche occupied by Light Rail Transit (LRT). This appears to be feasible in any medium-sized or larger city, especially in emerging and developing economies, and case studies are outlined for Perth and Thimpu to illustrate its potential

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving

    Door to door: Future of the vehicle future of the city

    Get PDF
    International audienceLes véhicules écologiques et la communication numérique embarquée, à l’ère des flux intelligents et de l’Internet des objets, transforment l’architecture et la ville contemporaines. Door to door, Futur du véhicule, futur urbain, repense les situations urbaines, théorise et imagine les modèles futurs de développement, les nouveaux programmes architecturaux qui en découlent. Il propose et présente les « espaces de l’accès », l’extension-multiplication de l’accessibilité « porte-à-porte » sur six métropoles européennes, et la fonction réparatrice de ces nouveaux outils de « l’auto-mobilité » communicante, résolvant par leur usage les dysfonctionnements urbains.Le parking devient un programme d’avenir pour l’architecture, tandis que le Véhicule Ecologique Communicant (VEC), un outil bientôt automate, ni bruyant, ni sale, côtoie humains, nature et animaux dans les bâtiments – le partage des présences et des activités dans un « grand espace commun ». Le VEC est l’exemple le plus puissant de l’interaction entre la pratique des territoires urbanisés et les TIC. Il est le marqueur le plus incisif du retour du modèle des flux pour penser l’urbain, sous une forme cohérente avec la demande ou les injonctions de la société des échanges et du partage qui s’est mise en marche : la mobilité-accessibilité est redevenue le programme premier, la structure du futur. Que devient l’urbain lorsque l’accès en est le trait le plus dominant ? Les « pôles d’accessibilité et d’échange » sont des dispositifs de transformation de la vie urbaine, qu’ils reconfigurent pour plus de confort et d’efficacité.L’arrivée des nouveaux véhicules accélère ainsi l’interférence entre l’urbanisme des usages et des services et l’urbanisme spatial. A ce niveau, les véhicules sont équivalents à des bâtiments

    Automated Transit Networks (ATN): A Review of the State of the Industry and Prospects for the Future, MTI Report 12-31

    Get PDF
    The concept of Automated Transit Networks (ATN) - in which fully automated vehicles on exclusive, grade-separated guideways provide on-demand, primarily non-stop, origin-to-destination service over an area network – has been around since the 1950s. However, only a few systems are in current operation around the world. ATN does not appear “on the radar” of urban planners, transit professionals, or policy makers when it comes to designing solutions for current transit problems in urban areas. This study explains ATN technology, setting it in the larger context of Automated Guideway Transit (AGT); looks at the current status of ATN suppliers, the status of the ATN industry, and the prospects of a U.S.-based ATN industry; summarizes and organizes proceedings from the seven Podcar City conferences that have been held since 2006; documents the U.S./Sweden Memorandum of Understanding on Sustainable Transport; discusses how ATN could expand the coverage of existing transit systems; explains the opportunities and challenges in planning and funding ATN systems and approaches for procuring ATN systems; and concludes with a summary of the existing challenges and opportunities for ATN technology. The study is intended to be an informative tool for planners, urban designers, and those involved in public policy, especially for urban transit, to provide a reference for history and background on ATN, and to use for policy development and research

    Lowering global consumption of petroleum, while increasing profit: Tesla Motors ridesharing

    Get PDF
    Demonstrating profitability has been a major challenge for Tesla Motors. This research explored the creation of a rideshare service as a short-term and long-term instrument for growth. Information was gathered and analyzed from successful and unsuccessful businesses to determine viability and potential for success. The research question asked, what are the existing technologies, services, and or business models that can be implemented by Tesla Motors to both innovate and improve profitability? This study used a qualitative research approach to assess available published data and to evaluate possible options to answer the research question. The findings conclude that Tesla should enter the rideshare industry; it would be feasible and attractive in terms of ROI, and require minimal initial investment. Further suggestions outline disruption and encroachment into the multibillion dollar healthcare industry

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving

    Mass introduction of electric passenger vehicles in Brazil: impact assessment on energy use, climate mitigation and on charging infrastructure needs for several case studies

    Get PDF
    Mobility has proved to be a major challenge for human development, especially in urban centers worldwide, where more displacement is required, since fossil fuels consumption is increasing as well as greenhouse gas (GHG) emissions, causing air quality degradation and global warming. The predicted population increase in cities tends to increase the demand for mobility and to further exacerbate those impacts. Therefore, sustainable transport is key for the future of mobility, and electric vehicle (EV) has emerged as a recognized sustainable option. However, there are many electric vehicle barriers diffusion. This research aims to contribute to the diffusion of EV in Brazil, by assessing: 1) whether EV is a more sustainable technology when compared with ethanol vehicle; 2) the impacts of the expansion of electric mobility on CO2 emissions, in Sao Paulo; 3) how to overcome the barriers for the charging infrastructure deployment at the municipality level, in Sao Paulo, Rio de Janeiro and Belo Horizonte; and 4) key challenges and opportunities from the mass adoption of EV in Brazil. A plethora of different methods were used, including scenario analysis, multi-criteria decision methods, geographic information systems and SWOT analysis. Main results point to EV as the best technology to mitigate passenger transport related CO2 emissions in Brazil, due to its low carbon footprint. In Sao Paulo, this option could reduce around 11 MtCO2 by 2030 and save 6,200 billion USD in energy with the replacement of 20 percent of gasoline cars with EV. To meet 1 percent of EV's market share, Sao Paulo, Rio de Janeiro and Belo Horizonte together will need around 6,500 charging stations concentrated in around 1/3 of their territories (level 2). Brazil may likely have up to 10 percent of EV penetration by 2030, with the diffusion taking place mostly in southeastern municipality. Ethanol, lack of electric mobility public policy, non-urbanized like subnormal agglomerates, and risk areas, like flood hazard, are major obstacles for EV diffusion in Brazil

    The End of Traffic and the Future of Access: A Roadmap to the New Transport Landscape

    Get PDF
    In most industrialized countries, car travel per person has peaked and the automobile regime is showing considering signs of instability. As cities across the globe venture to find the best ways to allow people to get around amidst technological and other changes, many forces are taking hold — all of which suggest a new transport landscape. Our roadmap describes why this landscape is taking shape and prescribes policies informed by contextual awareness, clear thinking, and flexibility
    • …
    corecore