9 research outputs found

    UnifyDR: A Generic Framework for Unifying Data and Replica Placement

    Get PDF
    The advent of (big) data management applications operating at Cloud scale has led to extensive research on the data placement problem. The key objective of data placement is to obtain a partitioning (possibly allowing for replicas) of a set of data-items into distributed nodes that minimizes the overall network communication cost. Although replication is intrinsic to data placement, it has seldom been studied in combination with the latter. On the contrary, most of the existing solutions treat them as two independent problems, and employ a two-phase approach: (1) data placement, followed by (2) replica placement. We address this by proposing a new paradigm, CDR , with the objective of c ombining d ata and r eplica placement as a single joint optimization problem. Specifically, we study two variants of the CDR problem: (1) CDR-Single , where the objective is to minimize the communication cost alone, and (2) CDR-Multi , which performs a multi-objective optimization to also minimize traffic and storage costs. To unify data and replica placement, we propose a generic framework called UnifyDR , which leverages overlapping correlation clustering to assign a data-item to multiple nodes, thereby facilitating data and replica placement to be performed jointly. We establish the generic nature of UnifyDR by portraying its ability to address the CDR problem in two real-world use-cases, that of join-intensive online analytical processing (OLAP) queries and a location-based online social network (OSN) service. The effectiveness and scalability of UnifyDR are showcased by experiments performed on data generated using the TPC-DS benchmark and a trace of the Gowalla OSN for the OLAP queries and OSN service use-case, respectively. Empirically, the presented approach obtains an improvement of approximately 35% in terms of the evaluated metrics and a speed-up of 8 times in comparison to state-of-the-art techniques.This work was supported by the Agentschap Innoveren & Ondernemen (VLAIO) Strategic Fundamental Research (SBO) under Grant 150038 (DiSSeCt)

    ON SCHEDULING AND COMMUNICATION ISSUES IN DATA CENTERS

    Get PDF
    The proliferation of datacenters to handle the rapidly growing amount of data being managed in the cloud, necessitates the design, management and effective utilization of the thousands of machines that constitute a data center. Many modern big data applications require access to a large number of machines and datasets for training neural nets or for other big data processing. In this thesis, we present research challenges and progress along two fronts. The first challenge addresses the need to schedule communication between machines in a much more effective manner, as several running applications compete for network bandwidth. We address a basic question known as coflow scheduling to optimize the weighted average completion time of tasks that are running across different machines in a datacenter and to effectively handle their communication needs. Sometimes, we are forced to distribute a task among multiple datacenters due to cost or legal reasons. For this case, we also study a related model that addresses communication needs of tasks that process data on multiple data centers and handles communication requirements of such tasks across a wide area network with possibly widely varying bandwidth and network structures across different pairs of machines. The second challenge is from a cloud user's perspective - since access to resources such as those provided by Amazon AWS can be expensive at scale, cloud computing providers often sell under utilized resources at a significant discount via a spot instance market. However, these instances are not dedicated and while they offer a cheaper alternative, there is a chance that the user's job will be interrupted to make room for higher priority tasks. Certain non-critical applications are not significantly impacted by delays due to interruptions, and we develop an initial framework to study some basic scheduling questions under this circumstance. In all of these topics, the problems we study are NP-hard and our focus is on developing good approximation algorithms. In addition, while we attack these problems from a theoretical perspective, all the algorithms developed in this thesis are practical and efficient, and can be easily deployed in practice, some are already deployed

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Urban Informatics

    Get PDF
    This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma
    corecore