853 research outputs found

    Towards a Simple Relationship to Estimate the Capacity of Static and Mobile Wireless Networks

    Full text link
    Extensive research has been done on studying the capacity of wireless multi-hop networks. These efforts have led to many sophisticated and customized analytical studies on the capacity of particular networks. While most of the analyses are intellectually challenging, they lack universal properties that can be extended to study the capacity of a different network. In this paper, we sift through various capacity-impacting parameters and present a simple relationship that can be used to estimate the capacity of both static and mobile networks. Specifically, we show that the network capacity is determined by the average number of simultaneous transmissions, the link capacity and the average number of transmissions required to deliver a packet to its destination. Our result is valid for both finite networks and asymptotically infinite networks. We then use this result to explain and better understand the insights of some existing results on the capacity of static networks, mobile networks and hybrid networks and the multicast capacity. The capacity analysis using the aforementioned relationship often becomes simpler. The relationship can be used as a powerful tool to estimate the capacity of different networks. Our work makes important contributions towards developing a generic methodology for network capacity analysis that is applicable to a variety of different scenarios.Comment: accepted to appear in IEEE Transactions on Wireless Communication

    Efficient wireless multimedia multicast in multi-rate multi-channel mesh networks.

    Get PDF
    Devices in wireless mesh networks can operate on multiple channels (MC) and automatically adjust their transmission rates for the occupied channels. This paper shows how to improve performance-guaranteed multicasting transmission coverage for wireless multihop mesh networks by exploring the transmission opportunity offered by multiple rates (MR) and MC. Based on the characteristics of transmissions with different rates, we propose and analyze parallel low-rate transmissions and alternative rate transmissions (ART) to explore the advantages of MRMC in improving the performance and coverage tradeoff under the constraint of limited channel resources. We then apply these new transmission schemes to improve the WMN multicast experience. Combined with the strategy of reliable interference-controlled connections, a novel MRMC multicast algorithm (LC-MRMC) is designed to make efficient use of channel and rate resources to greatly extend wireless multicast coverage with high throughput and short delay performance. Our NS2 simulation results prove that ART and LC-MRMC achieve improved wireless transmission quality across much larger areas as compared to other related studies
    • …
    corecore